Курсовая работа: Экспертные системы как прикладная область искусственного интеллекта

· экспертные системы на символьных процессорах и рабочих станциях (SUN, АРОLLО);

· экспертные системы на мини- и супермини-ЭВМ (VАХ, micro-VАХ и другие);

· экспертные системы на персональных компьютерах (IВМ РС, МАС II и подобные).

Классификация по степени интеграции с другими программами

Автономные экспертные системы работают непосредственно в режиме консультаций с пользователем для специфических «экспертных» задач, для решения которых не требуется привлекать традиционные методы обработки данных (расчёты, моделирование и так далее.).

Гибридные экспертные системы представляют программный комплекс, агрегирующий стандартные пакеты прикладных программ (например, математическую статистику, линейное программирование или системы управления базами данных) и средства манипулирования знаниями. Это может быть интеллектуальная надстройка над ППП или интегрированная среда для решения сложной задачи с элементами экспертных знаний.

Несмотря на внешнюю привлекательность гибридного подхода, следует отметить, что разработка таких систем являет собой задачу, на порядок более сложную, чем разработка автономной экспертной системы. Стыковка не просто разных пакетов, а разных методологий (что происходит в гибридных системах) порождает целый комплекс теоретических и практических трудностей.

1.3. Отличие экспертных систем от традиционных программ

Один из способов определить экспертные системы - это сравнить их с обычными программами. Главное различие состоит в том, что экспертные системы манипулируют знаниями, тогда как обычные программы манипулируют данными.Фирма Теknowledge, которая занимается производством коммерческих экспертных систем, описывает эти различия, как показано в следующей таблице.

Обработка данных Инженерия знаний

Представление и использование данных

Алгоритмы

Повторный прогон

Эффективная обработка больших баз данных

Представление и использование знаний

Эвристики

Процесс логического вывода

Эффективная обработка баз знаний

Специалисты в области искусственного интеллекта имеют несколько более узкое (и более сложное) представление о том, что такое экспертная система. Под экспертной системой понимается программа для ЭВМ, обладающая следующими свойствами.

Компетентность. Экспертная система должна демонстрировать компетентность, то есть достигать в конкретной предметной области того же уровня профессионализма, что и эксперты-люди. Но просто уметь находить хорошие решения ещё недостаточно. Настоящие эксперты не только находят хорошие решения, но часто находят их очень быстро, тогда как новичкам для нахождения тех же решений, как правило, требуется намного больше времени. Следовательно, экспертная система должна быть умелой - она должна применять знания дляполучения решений эффективно и быстро,используя приёмы и ухищрения, какие применяют эксперты-люди, чтобы избежать громоздких или ненужных вычислений. Для того чтобы по-настоящему подражать поведению эксперта-человека, экспертная система должна обладать робастностъю. Этоподразумевает не только глубокое, но и достаточно широкое понимание предмета. А этого можно достичь, используя общие знания и методы нахождения решений проблем, чтобы уметь рассуждать исходя из фундаментальных принципов в случае некорректных данных или неполных наборов правил. Это один из наименее разработанных методов в современных экспертных системах, но именно им успешно пользуются эксперты-люди.

Символьные рассуждения. Эксперты, решая какие-то задачи (особенно

такого типа, для решения которых применяются экспертные системы), обходятся без решения систем уравнений или других трудоёмких математических вычислений. Вместо этого они с помощью символов представляют понятия предметной области и применяют различные стратегии и эвристики в процессе манипулирования этими понятиями. В экспертной системе знания тоже представляются в символьном виде, то есть наборами символов, соответствующих понятиям предметной области. В искусственном интеллекте символ - это строка знаков, соответствующая содержанию некоторого понятия реального мира.

Примеры символов:

Продукт

ответчик

0.8

Эти символы можно объединить, чтобы выразить отношения между ними. Когда эти отношения представлены в программе искусственного интеллекта, они называются символьными структурами.

Примеры символьных структур:

(ДЕФЕКТНЫЙ продукт)

(ВЫПУЩЕННЫЙ ответчиком продукт)

К-во Просмотров: 298
Бесплатно скачать Курсовая работа: Экспертные системы как прикладная область искусственного интеллекта