Курсовая работа: Электроконтактная наплавка

Рис. 4. Двухзаходная схема наплавки:

а – наплавка валика первого захода, б – наплавка валика второго захода

Валик в зазоре между наплавленными витками наплавляют при силе тока несколько большей, чем сила тока наплавки первого валика, вследствие необходимости нагрева поверхностного слоя металла уже наплавленных соседних витков для соединения их с наплавленным валиком.

Двухзаходная схема наплавки не требует изменений установки, так же проста и надежна, как и основная технологическая схема.

Основное ее достоинство – возможность уменьшить тепловыделение наплавкой спиралевидного валика с увеличенным шагом. Кроме того, перед наплавкой второго валика деталь может быть охлаждена в требуемом режиме.•

Меньшее термическое влияние на основной металл при наплавке по двухзаходной технологической схеме сопровождается уменьшением производительности [7].

Двухточечная технологическая схема. /Клименко Ю. В. Авт. свид. № 407678. – «Открытия, изобретения, пром. образцы, товарные знаки», 1973, № 47, с. 37./

Принципиальные отличия ее – схема включения детали в цепь тока наплавки и последовательность наплавки единичных площадок.

Ток в зону наплавки подводится через два наплавляющих ролика, что позволяет исключить из внешнего контура контактный переход «патрон – металл основы» и уменьшить потери мощности. Особенность этой схемы также и в том, что первым наплавочным роликом наплавляется спиралевидный валик, в котором соседние единичные площадки не перекрываются, а вторым роликом проплавляются образовавшиеся пропуски (рис. 5.). Таким образом, одним импульсом тока наплавляются две диаметрально противоположные площадки металла.

Сплошной слой металла, как и при наплавке по первым двум схемам, образуется за счет перекрытия по ширине соседних витков спиралевидного валика, что обеспечивается соответствующей скоростью перемещения роликов относительно вращающейся детали.

Двухточечная технологическая схема позволяет повысить производительность наплавки на 70–80%.

Однако при наплавке по этой схеме тепловыделение происходит на небольшом участке металла основы. Поэтому двухточечную технологическую схему целесообразно применять для наплавки массивных деталей, к которым не предъявляется жестких требований по допустимому термическому влиянию, а вероятность температурной деформации мала [7].

Рис. 5. Двухточечная схема наплавки:

1 – прерыватель тока; 2 – трансформатор; 3 – кулачки патрона базового станка; 4 и 4' – наплавляющие ролики; 5 – наплавленный металл; 6–металл основы.

Схема электроконтактной наплавки в высаженную канавку (метод Б. М. Аскинази.). Одним из существенных недостатков всех способов наплавки является снижение усталостной прочности наплавленных деталей вследствие разупрочнения наплавленного металла в месте нахлеста спиралевидных валиков. В этой зоне происходит повторный отжиг при наложении очередного валика металла и снижение твердости металла. Здесь наблюдается наибольшее количество дефектов металлургического происхождения.

Рис. 6. Схема наплавки в высаженную канавку:

а – схема электромеханической высадки: б – схема электроконтактной наплавки; 1 – деталь; 2 –высаженная канавка; 3 – высаживающая пластина; 4 – прерыватель тока; 5 – наплавленный валик присадочного металла; 6 – наплавляющий ролик

Таким образом, при наплавке металла спиралевидными перекрывающимися валиками снижение усталостной прочности неизбежно.

Восстановление размеров изношенной детали (например, увеличение диаметра шейки вала) наплавкой без перекрытия валиков оказалось возможным в сочетании с другим способом восстановления – электромеханической высадкой.

Технология восстановления предусматривает предварительную электромеханическую высадку спиральной канавки на поверхности изношенной шейки вала (рис. 6,а) и последующую наплавку дополнительного металла в образовавшуюся канавку (рис. 6,б) электроконтактным способом. При этом валики присадочного металла разделяются высаженным металлом детали. Наплавлять металл в высаженную канавку целесообразно импульсами тока с модулированным фронтом, так как при наплавке прямоугольными импульсами тока (рис. 7,а) его значение в момент включения равно номинальному, а площадь контакта круглой присадочной проволоки со стенками канавки минимальна.

Затем участок присадочной проволоки, находящейся под наплавляющим роликом, деформируется, заполняя канавку. Соответственно деформации растет площадь контакта присадка – металл основы. Однако при этом значение тока остается постоянным, а следовательно, плотность тока уменьшается пропорционально площади контакта. По такому же закону распределяется и температура по площади контакта, что не обеспечивает одинаковых условий соединения металлов. Цель модуляции фронта импульса – обеспечить постоянную плотность тока в контакте деформирующейся присадочной проволоки со стенками высаженной канавки.

Время нарастания тока до номинального значения tМ (рис. 7,6) примерно равно времени деформации присадочной проволоки до заполнения всего сечения канавки.

Рис. 7. Схема нагрева и деформации присадочной проволоки прямоугольным импульсом тока (а) и импульсом тока с модулированным фронтом (б)

При наплавке высаженной канавки на образце из стали 45 диаметром 50 мм проволокой из стали 45 диаметром 1,8 мм оптимальным является следующий режим: сила тока наплавки 11 кА; давление на наплавляющий электрод 80 кгс; длительность импульса 0,06 с; длительность модуляции 0,04 с; длительность пауз между импульсами 0,24 с; число оборотов детали 9 об/мин. Прочность соединения наплавленного валика с основой в этом случае составляет 55–60 кгс/мм2 . Технологическая схема электроконтактной наплавки в высаженную канавку обеспечивает технико-экономический эффект, выражающийся в увеличении срока службы восстановленных деталей, работающих в цикличном или знакопеременном режиме нагружения, ввиду незначительного снижения их усталостной прочности [7]. Наиболее слабое место в технологии ЭКН проволоки (рис. 8) – обеспечение удовлетворительного качества соединения боковых поверхностей проволок 1 между собой. Кроме того, в корневой части этого соединения в месте контакта проволок 1 с деталью 2 могут образовываться пустоты, служащие концентраторами напряжений и источниками коррозионного разрушения.

В зависимости от режимов наварки и используемых материалов процесс образования сварного соединения может происходить с расплавлением контактной зоны и образованием литого ядра или без расплавления. В связи с этим и получение сварного соединения может происходить как в жидкой, так и в твердой фазе.

1
???. 8 ???????????? ?????????? ??? ???????????? ??????? ??? ?????????

К-во Просмотров: 510
Бесплатно скачать Курсовая работа: Электроконтактная наплавка