Курсовая работа: Электропривод с вентильной машиной
Рис. 2. Функциональная схема БДПТ и ВМ.
В случае БДПТ на обмотках машины формируется импульсное напряжение (ток), а в случае вентильной машины на выходе СПП формируется синусоидальное или квазисинусоидальное напряжение (ток).
Принцип управления вентильной машиной поясняет рис. 3. Датчик положения ротора (ДПР), преобразователь координат (ПК) и силовой полупроводниковый преобразователь (СПП) совместно формируют на обмотках статора машины напряжения , , таким образом, чтобы результирующий вектор напряжений всегда был сдвинут на угол и неподвижен относительно оси магнитного поля ротора.
Рис. 3. Физическая модель вентильной машины.
В этом случае и результирующий вектор тока будет сдвинут и неподвижен относительно потока ротора , что и создаёт момент на валу машины.
Ось магнитного поля в синхронной машине принято обозначать , а перпендикулярную ось – буквой (рис. 3). При анализе машины ось считается вещественной осью, а ось – мнимой.
Уравнения равновесия ЭДС на обмотках статора в неподвижной системе координат базируются на втором законе Кирхгофа (ротор не имеет обмоток).
(1)
где
,
,
Преобразовав уравнения в мгновенных значениях к уравнениям в пространственных векторах, получим:
(2)
где – индуктивность статора, – потокосцепление статора в неподвижной системе координат.
Электромагнитный момент, развиваемый машиной, равен:
(3)
Уравнение равновесия моментов на валу машины:
(4)
где , – число пар полюсов.
Модель вентильной машины в неподвижной системе координат
Уравнения машины в неподвижной системе координат находятся на основании уравнений (1 – 4) с учётом того, что :
(5)
Разложим уравнения (5) по неподвижным осям.