Курсовая работа: Емпіричне дослідження програмного забезпечення

2.1 Пояснення до експертних оцінок

Openproj-1.4-src

Супроводжуваність. Подальша супроводжуваність даного програмного забезпечення буде досить складною. Оскільки у програмному коді присутня велика кількість зайвих коментарів(коментарії були створені лише для автоматичної генерації документів), які не передають важливу інформацію, а лише ускладнюють розуміння програмного коду.

Легкість виконання операцій. Будь-які завдання, що реалізуються даним програмним забезпеченням, виконуються досить легко та швидко за не великий проміжок часу.

TalendOpen Studio 3.2.1

Супроводжуваність. Програмний код є дуже громіздким і простежується досить велика зв’язаність між окремими класами. Тому при зміні однієї ділянки коду можуть виникнути помилки в інших ділянках коду, при чому їх кількість через високу зв’язаність класів може бути досить високою.

Легкість виконання операцій. Виконувати операції, що реалізовані в програмі, надзвичайно легко, що забезпечується зрозумілим інтерфейсом та детальною документацією, а також завдяки досить високій швидкості роботи програми.

plazma-source 0.1.8

Супроводжуваність. Велика кількість коду прогамного забезпечення є важко супроводжуваним та простежуваним.

Легкість виконання операцій. Виконувати операції надзвичайно легко, що забезпечується зрозумілим інтерфейсом.

Нотатка. Під час виконання курсової роботи було проаналізовано також такі властивості програмного забезпеченя, як зрозумілість, повнота, стислість, портованість, узгодженість, тестованість, юзабіліті, надійність, структурованість, ефективність, безпека, зрозумілість інтерфейсу, зрозумілість повідомлень про помилки, очікуваність функціональності та документація. Усі експертні оцінки додаються у документі формату Microsoft Office Word «Додаток до курсової роботи»

2.2 Пояснення метрик ПЗ за варіантом

LOC – метрика, що вказує на кількість фізичних рядків коду.

NOM – метрика, що вказує на кількість методів у програмному коді.

NOC – метрика, що вказує на кількість класів у проекті.

NDD – метрика, що вказує на кількість кількості прямих нащадків.

CALL – метрика, що вказує на кількість викликів методу.

WMC- метрика, що вказує на вагову значимість методів.

TCC –метрика, що вказує на щільність згуртованості класу.

PNAS – метрика, що вказує на частки нових додаткових послуг.

BovR – метрика, що вказує на співвідношення перевизначених базових класів.

CDISP – метрика, що вказує на дисперсійний зв’язок.

Нотатка. Результати вимірювання метрик вище зазначених проектів подано у додатковому документі формату Excel «Додаток до курсової роботи».


3. Опис алгоритмів та засобів

Статистичний аналіз, який виконується з метою визначення залежностей між метриками, складається з трьох етапів: первинний статистичний аналіз, кореляційний аналіз та регресійний аналіз. У даній курсовій роботі використовувалась наступна схема побудови залежностей.

Мал.1. Схема побудови залежностей


4. Первинний статистичний аналіз метрик та експертних оцінок

Метою первинного статистичного аналізу являється визначення закону розподілу випадкової величини. На етапі первинного статистичного аналізу відбувається дослідження вхідних статистичних даних. Спочатку аналізуються метрики, отримані в результаті вимірювання набору програм, далі експертні оцінки, що зробили експерти для цього ж набору програм. Кінцевою метою первинного статистичного аналізу є визначення, чи належить побудований закон до нормального. Причиною цього є те, що подальший аналіз базується на перевірці на „нормальність” закону розподілу, тобто кожний з наступних етапів починається цією перевіркою, і в залежності від відповіді застосовуються різні методи обчислень.

К-во Просмотров: 190
Бесплатно скачать Курсовая работа: Емпіричне дослідження програмного забезпечення