Курсовая работа: Эпитаксиальный рост простых полупроводников Si и Ge на поверхности Si(111)
Введение
С физикой тонких пленок связаны достижения и перспективы дальнейшего развития микроэлектроники, оптики, приборостроения и других отраслей новой техники. Успехи микроминиатюризации электронной аппаратуры стали возможны благодаря использованию управляемого эпитаксиального выращивания тонких слоев полупроводников, металлов и диэлектриков в вакууме из различных сред. Несмотря на многочисленные и разносторонние исследования, процессы эпитаксиальной кристаллизации не получили полного объяснения. Обусловлено это, в первую очередь, сложностью проблем связанных с процессами кристаллизации в различных системах и средах.
В последние годы наблюдается возрастание интереса к поверхности твердого тела. Экспериментальные достижения в этой области связаны с развитием техники сверх высокого вакуума, диагностической аппаратуры, такой как сканирующая туннельная микроскопия и разработкой новых спектроскопических методов исследования поверхности. Эти исследования обеспечили более глубокое проникновение в структуру и свойства поверхностных слоев твердого тела. Однако представления о структуре поверхности и влиянии ее на эпитаксиальный рост недостаточно развиты.
В данной работе исследуется эпитаксиальный рост простых полупроводников Siи Geна поверхности Si(111) методом анализа осцилляций зеркально-отраженного пучка при дифракции быстрых электронов.
Обзор литературы
Молекулярно-лучевая эпитаксия Siи Ge7
В начале 60-х с большим оптимизмом были начаты работы в области обработки поверхностей пластин кремния в вакууме, но через некоторое время исследователи этого направления утратили ведущие позиции, и в настоящее время интегральные схемы изготавливают на кремниевых пластинах методами химической обработки. Вместе с тем необходимость создания интегральных схем очень большой степени интеграции стала основной движущей силой для понижения температур обработки, и постепенно технологические приемы, связанные с физическими методами, проникают в технологические линии для изготовления кремниевых интегральных схем. В этом отношении выращивание кремниевых эпитаксиальных пленок приборного качества в условиях сверхвысокого вакуума (СВВ) явилось важным шагом вперед. Этот факт отражен в резком возрастании с тех пор числа публикаций по молекулярно лучевой эпитаксии (МЛЭ) кремния.
Высококачественный процесс послойного роста принципиально важен для производства материалов для электроники с помощью МЛЭ. Он привлекает к себе внимание благодаря ряду присущих ему преимуществ, таких как: его гибкость, обеспечение высокой чистоты, возможность ведения всего процесса производства в вакууме, применимость масок, допустимость существенного варьирования скорости роста и понижение температуры кристаллизации, быстрота перехода от осаждения одного полупроводника к другому.
Использование эпитаксиальной технологии в микроэлектронике требует устранения или сведения к минимуму протяженности переходных слоев между пленками в полупроводниковых структурах. Метод осаждения из газовой фазы путем химических реакций для Si/Siи Ge/Siимеет температурную область кристаллизации 800-1200°С[1]. При такой температуре существенны процессы объемной диффузии между материалом подложки и осаждаемым веществом, что ведет к размытию границы между ними. Характерные температуры осаждения Si/Siи Ge/Siдля получения эпитаксиальных пленок методом МЛЭ лежат в диапазоне 300-800 °С. Низкая температура МЛЭ кремния и германия достигается тем, что этот метод не требует ни плавления, ни химической реакции осаждения. В этих условиях влияние диффузии и автолегирования незначительно, а деформация во время роста минимальна. Благодаря этому стало возможным получение дельта слоев[2], резких границ в гетероструктурах и четких профилей легирования.
Поверхность Si(111)
Исследование процессов роста является важной проблемой МЛЭ, так как точное представление о механизмах происходящих процессов позволит управлять ими и создавать слои с воспроизводимыми характеристиками.
Благодаря большому количеству современных методик анализа поверхности таких, например, как дифракция медленных электронов (ДМЭ)[3], фотоэлектронная спектроскопия с угловым разрешением [4], просвечивающая электронная микроскопия и сканирующая туннельная микроскопия (СТМ)[5-7], позволили получить много полезной информации о строении поверхности и процессах роста.
Из-за взаимодействия оборванных связей, атомы в приповерхностной области стремятся перестроиться в более энергетически-выгодные положения, образуя на поверхности двумерную периодическую структуру. Природа и стабильность реконструированных поверхностей очень чувствительна к условиям приготовления образца. Так, поверхность скола Si(111) реконструируется в метастабильную структуру (2х1), которая при отжиге 380°С необратимо трансформируется в структуру (7х7)[8]. При температуре выше 830°С поверхность Si(111) имеет сверхструктуру (1x1) (не имеет сверхструктуры) [9], эта температура является точкой фазового перехода для поверхностной реконструкции Si(111).
Наиболее полную информацию о структуре и морфологии поверхности дает сканирующая туннельная микроскопия. Изображения поверхности, полученные этим методом, свидетельствуют о том, что в зависимости от способа приготовления образца, атомарно чистая поверхность Si(111) может содержать смесь нескольких сверхструктур. Так Y.-N. YangE.D. Williams[10] наблюдали, что для образца нагретого до 900°С и закаленного со скоростью 100К/сек., на поверхности Si(111) образуются помимо (7x7) сверхструктуры еще ряд метастабильных сверхструктур как (11x11),(9x9), (2x2),( 3x 3).
Говоря о поверхностных реконструкциях, имеется в виду двумерная периодичность на атомарно гладких частях поверхности. Реальная поверхность кремния далека от совершенной и содержит различные дефекты, такие как выходящие на поверхность кристалла дислокации, дефекты упаковки и загрязнения оставшиеся после предэпитаксиальной обработки.
Из-за неидеальности среза, поверхность реального кристалла, прошедшего соответствующие стадии обработки, состоит из чередующихся террас, разделенных ступенями атомной высоты. Авторы [12] получили изображения ступеней слабо разориентированной поверхности Si(111). Откуда видно, что такая поверхность представляет собой последовательность почти параллельных и в пределах порядка отличающихся друг от друга по ширине террас, разделенных ступенями монослойной высоты.
Эпитаксия Siна Si(111)
Эпитаксия Siна Si(111) методом МЛЭ изучена в широком диапазоне температур, от комнатной [13], до 1000°С. Температура эпитаксии выбирается в зависимости от требуемой структуры пленки (например аморфная или монокристаллическая) и необходимым уровнем легирования (т.к. коэффициент встраивание атомов легирующей примеси сильно зависит от температуры).
В зависимости от размеров террас, температуры поверхности и пересыщения, при послойном росте различают два механизма: ступенчато-слоевой и двумерно-островковый.
В случае роста по ступенчато-слоевому механизм все упавшие на поверхность атомы, не образуя островков, встраиваются в ступени либо десорбируют. Если же концентрация адатомов на поверхности достигает некоторого критического значения зависящего от температуры и ширины террас, то начнется образование двумерных островков (двумерно-островковый механизм). Плотность адатомов, вокруг существующих островков уменьшается за счет диффузии и встраивания адатомов в островок или ступень. И в некоторой зоне вокруг уже образовавшихся островков последующие критические зародыши образовываться не могут.
Рост идет в основном за счет разрастания двумерных зародышей.
При повышении температуры роста происходит увеличение размеров критических зародышей, средних расстояний между ними и зон истощения вокруг их и у ступеней [7,14]. Пропуская по пластине Si(111) электрический ток можно добиться значительного увеличения ширины террас (до нескольких микрон) из-за эшелонирования поверхности[15], вследствие чего температура перехода от двумерно-островкового к ступенчато-слоевому механизму сдвигается в более высокотемпературную область.
Исследования процессов зарождения двумерных островков на поверхности Si(111)-(7х7) показало, что зарождение островков происходит предпочтительно на границах сверхструктурных доменов [5-7]. В процессе роста, сверхструктура монослойного островка, образующегося на поверхности, может не соответствовать сверхструктуре подложки. U.Kohler[13], изучая процессы зарождения и роста Siна Si(111) методом СТМ обнаружил, что на идеальной поверхности Si(111)-(7x7) образовавшийся монослойный островок может иметь помимо (7x7) сверхструктуры, еще (5x5) и (9x9). В [16] используя ДМЭ, показано, что для Si(111) с разориентацией не хуже 0.05 градусов в процессе роста, после покрытия десятью монослоями на растущей поверхности в температурном диапазоне 650-870 К (380-600°C)присутствует смесь двух сверхструктур (5x5) и (7x7), а при температурах роста выше 870 К (600°C) наблюдается только сверхструктура (7x7). Причем интегральная интенсивность сверхструктурных рефлексов зависит от температуры строго определенным образом.
Исследования зарождения Siна почти идеальной поверхности Si(111)-(7х7) показало, что зарождение островков происходит предпочтительно на метастабильных реконструкциях и дефектах поверхности уже образовавшихся островков, поэтому на идеальной поверхности (7х7) второй монослой начинает образовываться задолго до завершения первого. Затем островки двумонослойной высоты срастаются, после чего идет обычный послойный рост.
Анализируя размеры и плотность островков в течении или после роста можно определить некоторые параметры поверхности, например, такие как энергию активации поверхностной диффузии. Однако значение этой энергии в разных работах колеблется от 0.5 до 2 эВ, но большинство авторов при моделировании и расчетах других энергетических параметров поверхности используют значение 1эВ.
В работе замечено что образование островков на поверхности Si(111) зависит от направления ступени, на которой зарождаются островки. Для ступеней с направлением зарождающиеся на поверхности островки располагаются примерно на равном расстоянии друг от друга и от края ступени. Для ступеней с направлением на верхней террасе ступени, зародившиеся у края ступени островки, не имеют зоны обеднения с этой ступенью (см. Рис.1). Отличие этих ступеней заключается в том, что для ступени атомы находящиеся в ступени имеют одну оборванную связь, а для ступени две оборванные связи.
Островки, зарождающиеся на террасах, всегда имеют направления сторон такие же, как для ступеней, т.е. атомы стоящие на краю островков имеют по две оборванные связи.
Рисунок 1 Зарождение островков на террасах с различными направлениями ступеней
--> ЧИТАТЬ ПОЛНОСТЬЮ <--