Курсовая работа: Эпитаксиальный рост простых полупроводников Si и Ge на поверхности Si(111)

Интерес к эпитаксии германия на кремнии обусловлен как с технологической, так и научно-исследовательской точек зрения. Например, изготовление GaAsфотоприемников на дешевых кремниевых подложках, из-за несоответствия их постоянных решеток требует переходного слоя. Получение бездефектных Geслоев может решить эту проблему, т.к. GaAsи Ge имеют близкие значения постоянных решеток (0.569нм и 0.566нм соответственно).

В настоящее время сильно возрос интерес к прямому получению низкоразмерных GeSi структур[19,20]. Так образование трехмерных островков, например германия на кремнии, в соответствии с механизмом роста Странского-Крастанова [21], может быть использовано для получения слоя квантовых точек. При создании таких структур важно знать процессы происходящие на поверхности в процессе роста.

Начальная стадия роста при комнатной температуре на поверхности Si(111)-(7х7) характеризуется встраиванием атомов Ge в ступени поверхности и зарождением двумерных островков предпочтительно на границах сверхструктурных доменов. Рост Geидет послойно до толщины пленки три монослоя, последующий низкотемпературный рост ведет к образованию аморфной пленки [22]. При температуре поверхности больше 350°C после третьего монослоя начинается образование трехмерных островков [7]. Остановка роста на трех монослоях и отжиг при температуре больше 300°C ведет к тому, что атомы германия из третьего монослоя переходят в срелаксированные островки[5].

Изучая гетероэпитаксиальный рост Geна Si(111) авторы [5] определили энергию активации поверхностной диффузии (1.2 эВ) и показали, что она не зависит от скорости роста в интервале скоростей 0.03-0.14 монослоя/сек.

Дифракция быстрых электронов

Дифракция быстрых электронов на отражение (ДБЭ) является распространенным методом анализа структуры поверхности пленок в процессе МЛЭ. Большое распространение этого метода связано с простотой использования методики и наличие большого свободного пространства перед образцом. Еще одним из преимуществ ДБЭ является то, что из-за большого различия по энергии между упруго рассеянными электронами и фоном неупругого рассеяния и достаточность энергии первичных электронов для возбуждения свечения люминесцирующего экрана, в ДБЭ (в отличие от дифракции медленных электронов) отсутствует необходимость тщательной энергетической фильтрации и повторном ускорении.

Кроме того, ДБЭ позволяет непрерывно следить за ростом эпитаксиальных пленок на поверхности, вследствие того, что фронтальная часть образца становится доступной для испаряющихся источников. Большой интерес к МЛЭ, как к способу выращивания материалов для полупроводниковых приборов, оказал стимулирующее воздействие на применение ДБЭ.

Помимо улучшенного доступа к поверхности, обеспечиваемого геометрией ДБЭ, по сравнению с ДМЭ, этот метод обладает и другими преимуществами при изучении эпитаксиального роста и процессов на многослойных поверхностях. В частности, использование падения с малыми углами скольжения делает этот метод чувствительным к микрорельефу поверхности. Если ДМЭ (обычно при нормальном падении) выделяет хорошо упорядоченные области поверхности с ориентацией, близкой к средней ориентации поверхности, то электроны при скользящем падении будут проникать в шероховатости на поверхности, если она является микроскопически гладкой. Очевидно, что это повышает требования к более тщательному приготовлению образцов для исследования методом ДБЭ, но в то же время означает, что этот метод может выявить изменения в морфологии поверхности. Например, если эпитаксиальный рост приводит к росту островков на поверхности, то картина скользящего отражения от плоской поверхности, которая наблюдалась в отсутствии островков, сменится картиной содержащей дифракционные рефлексы от трехмерных объектов. Это может использоваться, например, для определения критической толщины псевдоморфной пленки, и определения ориентаций граней островков[19].

С другой стороны, ДБЭ имеет определенные недостатки при изучении двумерно симметричных структур для случая микроскопически-гладкой поверхности. Например, для выявления полной двумерной периодичности, образец необходимо вращать вокруг нормали к поверхности. Изменение периодичности в плоскости падения не приводят к изменениям периодичности дифракционной картины.

Кроме анализа структуры поверхности пленок, регистрация осцилляций зеркально-отраженного пучка быстрых электронов от поверхности растущей пленки дает возможность измерять скорость роста пленок и контролировать их состав и толщину. Анализируя характер осцилляций можно изучать реализуемые механизмы роста, определять параметры поверхностной диффузии и встраивания адатомов [23].

Осцилляции интенсивности имеют место при реализации двумерно-слоевого роста. За счет периодического изменения шероховатости, интенсивность зеркального рефлекса осциллирует отслеживая гладкость поверхности. Однако с увеличением толщины пленки исходная поверхность с атомно-гладкими террасами трансформируется в поверхность со стационарной степенью шероховатости. Это в свою очередь ведет к затуханию амплитуды осцилляций. Первая причина такой трансформации заключается в том, что по мере роста пленки по двумерно-слоевому механизму, т.е. за счет образования и разрастания двумерных зародышей, двухуровневая поверхность, характерная для идеального двумерно-слоевого роста, становится многоуровневой. Вторая причина в десинхронизации зарождения двумерных зародышей на разных террасах. Используя регистрацию осцилляций, авторы [24] предложили идею синхронизации образования двухмерных зародышей, расширив тем самым возможности метода МЛЭ.

Амплитуда осцилляций и их форма зависят от азимута и угла падения электронного пучка, т.е. от так называемых дифракционных условий. В условиях резонанса дифрагированная волна претерпевает многократное отражение от атомных плоскостей параллельных поверхности и имеет максимальную чувствительность к морфологии поверхности, поэтому в условиях поверхностного резонанса осцилляции имеют максимальную амплитуду.

Авторы показали, что при гомоэпитаксии Siна Si(100) осцилляции интенсивности зависят от азимута падения электронного пучка. Для направления одна осцилляция зеркального рефлекса соответствует покрытию в один монослой, а для [110] одна осцилляция отвечает толщине пленки в два монослоя. Причину этого они видят в различии дифрагирования на поочередно меняющихся реконструкциях поверхности (2x1) и (1x2), из-за присутствия выделенного направления в геометрии островков на этих поверхностях.

Многие авторы считают, что при двумерно-слоевом росте один период осцилляции зеркально отраженного пучка электронов точно соответствует одному (или двум для соответствующего азимута Si(100)) монослою пленки выросшей за это время.

Авторы экспериментально и компьютерным моделированием показали, что на поверхности Si(001) при неизменном потоке атомов на подложку период осцилляций увеличивается с увеличением температуры роста. Объяснение этого явления состояло в том, что при повышении температуры большая часть атомов начинает встраиваться в ступени, выбывая тем самым из процессов периодического изменения шероховатости поверхности, поэтому к моменту срастания островков, т.е. за один период осцилляции, вырастает пленка толщиной более монослоя.

Другие исследователи утверждали противоположное. В [29] была предложена модель процесса роста кристалла, из которой следует, что в области перехода от двухмерно-слоевого к ступенчато-слоевому механизму роста период осцилляций уменьшается с увеличением температуры роста. В работе [30] авторы измерили температурную зависимость периода осцилляций для Geна Ge(111). Полученные ими данные хорошо согласуются с моделью [29] и компьютерным моделированием. То есть при увеличении температуры подложки за время одной осцилляции должна вырастать пленка меньше монослоя.

Целью этой работы является исследование возможных механизмов влияющих на величину периода осцилляций.

Методика эксперимента

Разрешение вопроса о соответствии одного периода осцилляций пленке монослойной толщины, возможно путем независимого измерения периода осцилляций и скорости осаждения материала на поверхность. Анализируя температурную зависимость отклонения толщины пленки от монослоя, можно понять механизмы вызывающие это отклонение.

В данной работе измерена температурная зависимость толщины пленки кремния и германия на слабо разориентированой поверхности кремния (111). Эксперимент проводился на установке "Катунь-С", оснащенной электронно-лучевыми испарителями Si и Ge. Регистрация ДБЭ-осцилляций осуществлялась с помощью системы "Фотон-микро". Скорость роста германия и кремния в экспериментах составляла 0.02 нм/сек. Для сопоставления периода осцилляций с толщиной напыляемой пленки, во время роста измерялась скорость потока. Измерения производились кварцевым измерителем толщины, одновременно с регистрацией осцилляций. Сочетание этих двух методов позволило определить эффективную толщину эпитаксиальной пленки, выросшей за время, соответствующее периоду ДБЭ-осцилляций.

Для повышения удобства и точности измерений скорости осаждения, мной была разработана и собрана электронная схема, позволяющая передавать текущие значения показаний прибора в компьютер. И написана программа для чтения, обработки и хранения измеренных данных.

Установка молекулярно-лучевой эпитаксии «Катунь»

Автоматизированная многокамерная установка молекулярно-лучевой эпитаксии "Катунь" предназначена для получения многослойных эпитаксиальных пленочных структур в условиях сверхвысокого вакуума. Схема используемой в работе части установки показана на рисунке 2.


Рисунок 2.

Схема экспериментальной установки.

1) Люминесцентный экран.

2) Криопанель.

3) Нагреватель.

К-во Просмотров: 332
Бесплатно скачать Курсовая работа: Эпитаксиальный рост простых полупроводников Si и Ge на поверхности Si(111)