Курсовая работа: Этапы изучения понятия задачи и её решения в начальных класах
Какой текст можно назвать задачей, а какой нет?
o Маша нашла 7 лисичек, а Миша на 3 лисички больше.
o Маша нашла 7 лисичек, а Миша 5. Сколько всего лисичек нашли Миша и Маша?
Этим задание учитель должен вывести детей на обсуждение структуры задачи:
Можно ли назвать текст задачей, если в нём нет вопроса? Если да, то что вы скажете о таких текстах:
o Сколько всего учеников в классе?
o На сколько больше марок у Пети, чем у Иры?
Можно ли назвать текст задачей, если в нём только вопрос?
После этого дети формулируют вывод: любая задача состоит из условия и вопроса.
После этого предлагаем им составить условия к этим вопросам.
Для осознания учащимися взаимосвязи между условием и вопросом, детям предлагается задание:
Будут ли эти тексты задачами?
o На одной тарелке 3 огурца, а на другой 4. Сколько помидоров на двух тарелках?
o На клумбе 5 тюльпанов и 3 розы. Сколько пионов росло на клумбе?
Учащиеся должны заметить, что ответить на вопрос, поставленный в задачах, мы не сможем, пользуясь данным условием. Можно предложить изменить вопрос задачи и сделать вывод, что условие и вопрос задачи связаны между собой.
На втором этапе детей можно познакомить с проверкой решения задачи. В данном случае это будет практический способ. Привлекать самых слабых учеников к выполнению практической проверки, т.к. это решение задачи на уровне предметных действий.
o На одном проводе сидело 9 ласточек, а на другом 7 воробьёв. Сколько всего птиц сидело на проводах?
Вызванный ученик выкладывает на доске 9 кругов, обозначающих ласточек, затем 7 кругов, обозначающих воробьёв, и показывает движение рук всех птиц, которые сидели на проводах. Но привлекать к этому следует только тех, кто не справился с записью решения.
Средством организации этой деятельности могут быть специальные обучающие задания, включающие методические приемы сравнения, выбора, преобразования, конструирования.
Для приобретения опыта в семантическом и математическом анализе текстов задач (простых и составных) используется прием сравнения текстов задач. Предлагаются такие задания:
Чем похожи тексты задач? Чем отличаются? Какую задачу ты можешь решить? Какую не можешь? Почему?
o На одном проводе сидели ласточки, а на другом – 7 воробьёв. Сколько всего сидело птиц на проводах?
o На одном проводе сидело 9 ласточек, а на другом 7 воробьёв. Сколько всего сидело птиц на проводах?
o Подумай, будут ли эти тексты задачами?
o На одной тарелке 3 огурца, а на другой – 4. Сколько помидоров на двух тарелках?
o На клумбе росло 5 тюльпанов и 3 розы. Сколько тюльпанов росло на клумбе?
Эти задания позволяют школьникам сделать первые шаги в осмыслении структуры задачи.
С целью формирования умения выбирать арифметические действия для решения задач, предлагаются задания, в которых используются приемы [7, 212]:
1) выбор схемы: