Курсовая работа: Этапы производства микропроцессоров

Кэш-память 1 уровня с отслеживанием исполнения команд (Execution Trace Cache): Значительно повышает эффективность работы кэш-памяти команд, обеспечивая максимальную производительность часто используемых участков программного кода

Усовершенствованная технология динамического исполнения: Улучшенное прогнозирование ветвлений повышает производительность всех 32-разрядных приложений за счет оптимизации последовательности инструкций

Контроль температуры: Используется для защиты системных плат, позволяя определить момент, когда температурный режим превышает предельно допустимый

Встроенный механизм самотестирования (BIST): Единый механизм контроля ошибок микропрограммного ПО и больших логических матриц, а также тестирования кэш-памяти команд, кэш-памяти данных, буферов трансляции и ПЗУ.

Порт тестового доступа и механизм граничного сканирования на основе стандарта IEEE 1149. Позволяют тестировать процессор Pentium 4 и его подключение к системе через стандартный интерфейс.

Применена 100 (400) МГц системная шина (Quad-pumped, QPB), обеспечивающая пропускную способность в 3,2 ГБ/с против 133 МГц шины с пропускной способностью 1,06 ГБ/с у Pentium III. На самом же деле с ростом количества ступеней частота CPU растет, но операции обрабатываются дольше. Таким образом, Willamette с ростом частоты "поглупел", т.е. операции стали проходить по большему числу ступеней, и время обработки одной инструкции увеличилось. Так что, процессор получился слабый, даже обладая отличной FSB, его производительность не намного отличалась от Tualatin, а цена, в т. ч. на чипсет и память RDRAM не радовала, и спросом он особым не пользовался.

Технические характеристики: технология производства: 0,18 мкм; тактовая частота: 1.3-2 ГГц; кэш первого уровня: 8 +12 Кб; кэш второго уровня по технологии Advanced Transfer Cache 256 Кб (полноскоростной); процессор

32-разрядный; шина данных 64-разрядная (400 МГц); разъём Socket-423 и Socket-478; напряжение на ядре – 1.75 В.

Чтобы изменить положение вещей в mainstream и performance-сегменте, Tualatin был оставлен под Celeron, а Intel ввел новое ядро Northwood, выполненное по технологии 0,13 мкм. Их сейчас 3 модификации: Northwood-A с 100 (400), Northwood-B 133 (533) МГц и Northwood-C 200 (800) МГц системной шиной. Единственными отличиями в архитектуре стали технология изготовления 0.13-мкм и увеличенный до 512 Кб кэш L2, что вывело на данный момент Intel в лидеры. Основной соперник – процессор Athlon XP на ядре Barton – имеет примерно те же параметры, за исключением меньшего количества ступеней в конвейере, и соответственно, меньшей частоты работы кристалла и системной шины. Оба процессора имеют примерно одинаковую производительность.

Тем временем, Intel перевел value-сегмент также на P4 ядро Willamette-128. Это 32-разрядное суперскалярное CISC-ядро архитектуры IA-32, которое выпускается по технологическим нормам 0.18 мкм, имеет кэш первого уровня объемом 8 Кб для данных и трассировочный кэш на 12 тыс. микроопераций, длинный конвейер на 20 стадий; внешняя шина имеет разрядность 64 бита, частоту 100 (400) МГц, учетверенный поток данных (эквивалентно частоте 400 МГц). Кэш второго уровня, встроенный в ядро, у оригинального Willamette имел объем 256 Кб, но у Celeron урезан до 128 Кб. Выпускается с тактовыми частотами 1.7-2,4 ГГц. Производительность ниже, чем у AMD Duron на ядре Morgan и Applebred.

В 2003 году компания Intel объявила новую особенность ядра Northwood – технология Hyper-Threading позволяет искусственно распараллеливать код программ на несколько потоков ("нитей") и одновременно их выполнять при том, эмулируя наличие второго процессора на одном кристалле. В таком случае используются все незадействованные блоки CPU, что позволяет максимально эффективно загрузить блоки CPU.

Последним настольным Pentium 4 на ядре Northwood стала модель с тактовой частотой 3,40 ГГц и 512 Кбайт кэш-памяти L2.2. февраля 2004 года компания Intel объявила новое ядро Prescott для Pentium 4, выполненное по технологии 0,09 мкм с кэшем второго уровня объемом 1 Мбайт. На базе нового ядра пока будут выпускаться процессоры с частотами от 2,80 ГГц до 3,40 ГГц. Модели с шиной 800 МГц с частотами 2,80, 3, 3,20 и 3,40 ГГц имеют индекс E в маркировке, для того, чтобы отличить их от моделей с той же частотой и шиной на ядре Northwood. В третьем квартале 2004 года будет выпущен Pentium 4 с тактовой частотой 3,80 ГГц, а к концу года вполне можно ожидать и покорения символического рубежа в 4 ГГц.

Основными "фичами" нового ядра стали полный его редизайн, удлиненный до 31 стадии конвейер, новая технология изготовления с применением технологии напряженного кремния и диэлектриком CDO в межсоединениях, а также 13 новых инструкций (SSE3), улучшены технология Hyper-Threading, прогнозирование переходов и предварительная выборка данных в кэш, а также управление питанием.

Кроме этого, ускорены операции умножения целых чисел, введены дополнительные буферы записи. Кроме того, в новинке должна быть поддержка 64-битных инструкций, которые не совместимы с 64-битными инструкциями AMD и заблокированы, по крайней мере, пока. В новом процессоре предусмотрена технология аппаратного шифрования данных LaGrande, но программная поддержка появится позже. Новый кристалл имеют площадь 112 мм2 и содержит 125 млн. транзисторов. Из-за этого изменился и терморежим нового процессора – спецификация FMB 1.5. Термопакет теперь расширил свои диапазоны: старшая модель будет иметь тепловыделение 103 Вт. Из-за этого возникают проблемы с совместимостью с большинством имеющихся системных плат. Пока все процессоры имеют разъем Socket 478, но из-за увеличения энергопотребления он скоро будет сменен на Socket 775 с 775 ножками соответственно. Цены на эту линейку колеблются от $163 до $417, но вскоре она сравняется с ценами на линейку Northwood для стимуляции спроса.

Параллельно, компания Intel развивает технологию EPIC, применяемую в ее серверных 64-разрядных процессорах. Эта технология, по которой производятся современные процессоры Intel Itanium 2, подразумевает полный параллелизм команд, посылаемых компилятором в процессор. Такая архитектура названа IA-64.

Впрочем, традиционная архитектура IA-32 еще не до конца себя исчерпала, так что ее существование предполагается до 2006 года. Рано говорить о году 2005, ведь конвергенция все набирает обороты, а закон Мура все еще действует. Хотя в принципе уже очевидно, что прирост частоты и увеличение кэша уже не приносит должного прироста производительности, так что компании решили сделать ставку на технологии. Рост частоты при сохранении роста тепловыделения далее невозможен из-за резкого увеличения токов утечки транзисторов. Так как микроархитектуру до бесконечности усовершенствовать нельзя, да и нет в том смысла, то, очевидно, что будущее за интеграцией различных технологий и возможностей в чипы. Так компания Intel в серверном секторе делает ставку на многоядерность, а в настольном сегменте – на многопоточность. Компания AMD же, не желая вкладывать огромные инвестиции в подобные исследования сразу "ходит конем": всюду продвигает технологию производства SOI (Silicon-on-Insulator) и делает ставку на расширение микроархитекттуры до 64 разрядов, а также на шину HyperTransport.

2. Особенности производства микропроцессоров

Известно, что существующие КМОП-транзисторы имеют много ограничений и не позволят в ближайшем будущем поднимать частоты процессоров также безболезненно. В конце 2003 года на Токийской конференции специалисты Intel сделали очень важное заявление о разработке новых материалов для полупроводниковых транзисторов будущего. Прежде всего, речь идет о новом диэлектрике затвора транзистора с высокой диэлектрической проницаемостью (так называемый "high-k"-материал), который будет применяться взамен используемого сегодня диоксида кремния (SiO2), а также о новых металлических сплавах, совместимых с новым диэлектриком затвора. Решение, предложенное исследователями, снижает ток утечки в 100 раз, что позволяет вплотную подойти к внедрению производственного процесса с проектной нормой 45 нанометров. Оно рассматривается экспертами как маленькая революция в мире микроэлектронных технологий.

Чтобы понять, о чем идет речь, взглянем сначала на обычный МОП-транзистор, на базе которого делаются сложнейшие CPU. МОП-транзистор представлен на рисунке 2.

Рисунок 2 – МОП-транзистор.


В нем затвор из проводящего поликремния отделен от канала транзистора тончайшим (толщиной всего 1,2 нм или 5 атомов) слоем диоксида кремния (материала, десятилетиями используемого в качестве подзатворного диэлектрика).

Столь малая толщина диэлектрика необходима для получения не только малых габаритов транзистора в целом, но и для его высочайшего быстродействия (заряженные частицы передвигаются быстрее через затвор, в результате чего такой VT может переключаться до 10 миллиардов раз в секунду)

Упрощенно - чем ближе затвор к каналу транзистора (то есть, чем тоньше диэлектрик), тем "большее влияние" в плане быстродействия он будет оказывать на электроны и дырки в канале транзистора. Внешний вид изолирующего слоя затвора представлен на рисунке 3.

Рисунок 3 – Внешний вид изолирующего слоя затвора.

Но с другой стороны, такой тонкий диэлектрик пропускает большие паразитные токи электронов утечки из затвора в канал (идеальный МОП-транзистор должен пропускать ток от истока к стоку и не пропускать - от затвора к истоку и стоку). И в современных высокоинтегрированных микросхемах с сотнями миллионов транзисторов на одном кристалле токи утечки затворов становятся одной из фатальных проблем, препятствующих дальнейшему наращиванию количества транзисторов на кристалле. Более того, чем меньше по размерам мы делаем транзистор, тем тоньше нужно делать подзатворный диэлектрик. Но при его толщинах менее 1 нм резко (по экспоненте) возрастают туннельные токи утечки, что делает принципиально невозможным создание традиционных транзисторов менее определенных "горизонтальных" размеров (если при этом мы хотим получить от них хорошие скоростные характеристики). По оценкам экспертов, в современных чипах почти 40% энергии может теряться из-за утечек.

Поэтому важность открытия ученых Intel нельзя недооценивать. После пяти лет исследований в лабораториях корпорации разработали специальный материал, позволяющий заменить традиционный диоксид кремния в обычном маршруте производства микросхем. Требования к такому материалу весьма серьезны: высокая химическая и механическая (на атомарном уровне) совместимость с кремнием, удобство производства в едином цикле традиционного кремниевого техпроцесса, но главное - низкие утечки и высокая диэлектрическая проницаемость.

Если мы боремся с утечками, то толщину диэлектрика нужно повысить хотя бы до 2-3 нм (см. рисунок выше). Чтобы при этом сохранить прежнюю крутизну транзистора (зависимость тока от напряжения) необходимо пропорционально увеличить диэлектрическую проницаемость материала диэлектрика. Изолятор с высокой диэлектрической проницаемостью представлен на рисунке 4.

К-во Просмотров: 335
Бесплатно скачать Курсовая работа: Этапы производства микропроцессоров