Курсовая работа: Этапы производства микропроцессоров
Если проницаемость объемного диоксида кремния равна 4 (или чуть меньше в сверхтонких слоях), то разумной величиной диэлектрической проницаемости нового "интеловского" диэлектрика можно считать величину в районе 10-12. Несмотря на то, что материалов с такой диэлектрической проницаемостью немало (конденсаторные керамики или монокристалл кремния), тут не менее важны факторы технологической совместимости материалов. Поэтому для нового high-k-материала был разработан свой высокоточный процесс нанесения представленный на рисунке 5, во время которого формируется один молекулярный слой этого материала за один цикл.
Рисунок 5 – Схема высокоточного процесса нанесения слоя High-K.
Исходя из этой картинки можно предположить, что новый материал - это тоже оксид. Причем монооксид, что означает применение материалов преимущественно второй группы, например, магния, цинка или даже меди.
Но диэлектриком дело не ограничилось. Потребовалось сменить и материал самого затвора - привычный поликристаллического кремния. Дело в том, что замена диоксида кремния на high-k-диэлектрик ведет к проблемам взаимодействия с поликристаллическим кремнием (ширина запрещенной зоны транзистора определяет минимально возможные для него напряжения). Эти проблемы удается устранить, если использовать специальные металлы для затворов транзисторов обоих типов (n-МОП и p-МОП) в сочетании с особым технологическим процессом. Благодаря этой комбинации материалов удается достичь рекордной производительности транзисторов и уникально низких токов утечки, в 100 раз меньших, чем при использовании нынешних материалов. В этом случае уже не возникает искушения использовать для борьбы с утечками значительно более дорогую технологию SOI (кремний на изоляторе), как это делают некоторые крупные производители микропроцессоров. Характеристики транзисторов с нанесенным слоем High-K представлен на рисунке 6.
Рисунок 6 - Характеристики транзисторов с нанесенным слоем High-K.
Отметим также еще одно технологическое новшество Intel - технологию напряженного (strained) кремния, которая впервые используется в 90-нанометровых процессорах Prescott и Dothan. Наконец-то, компания Intel в подробностях рассказала, каким именно образом происходит формирование слоев напряженного кремния в ее КМОП-структурах. КМОП-ячейка состоит из двух транзисторов - n-МОП и p-МОП. КМОП-ячейка двух транзисторов представлена на рисунке 7.
Рисунок 7 - КМОП-ячейка двух транзисторов.
В первом (n-MOS) канал транзистора (n-канал) проводит ток при помощи электронов (отрицательно заряженных частиц), а во втором (p-MOS) - при помощи дырок (условно положительно заряженных частиц). Соответственно, и механизмы формирования напряженного кремния у этих двух случаев различны. Для n-MOS-транзистора используется внешнее покрытие слоем нитрида кремния (Si3N4), который за счет механических напряжений немного (на доли процента) растягивает (в направлении протекания тока) кристаллическую решетку кремния под затвором, в результате чего рабочий ток канала возрастает на 10% (условно говоря, электронам становится более просторно двигаться в направлении канала). В p-MOS-транзисторах все наоборот: в качестве материала подложки (точнее - только областей стока и истока) используется соединение кремния с германием (SiGe), что немного сжимает кристаллическую решетку кремния под затвором в направлении канала. Поэтому дыркам становится "легче" "передвигаться" сквозь акцепторные атомы примеси, и рабочий ток канала возрастает на 25%. Сочетание же обеих технологий дает 20-30-процентное усиление тока. Таким образом, применение технологии "напряженного кремния" в обоих типах устройств (n-MOS и p-MOS) приводит к значительному повышению производительности транзисторов при повышении