Курсовая работа: Фигуры постоянной ширины. Треугольник Рело

- Рассмотреть и изучить свойства фигур постоянной ширины;

- Доказать, что из всех фигур постоянной ширины треугольник Рело имеет наименьшую площадь;

- Выявить и рассмотреть открытые проблемы и задачи, связанные с треугольником Рело;

- Выяснить области применения треугольника Рело.

Для реализации цели и задач исследования я использовал следующие методы: Теоретический анализ литературы по исследуемой теме. Доказательство, что из всех фигур постоянной ширины треугольник Рело имеет наименьшую площадь. Рассмотреть практическое техническое применение фигур постоянной ширины.

Теперь подробнее о треугольнике Рело. У этой фигуры есть общие свойства с кругом, но присутствуют и свои, например, очертание четырёхугольника. Траектории движения точки на окружности и точки на вершине треугольника Рело различны, хотя у обеих присутствует циклоида. Траектория геометрического центра треугольника также не прямая, а трохоида.

Треугольник Рело нашёл своё применение в сверле Уаттса, высверливающем квадратное отверстие, в грейферном механизме первого кинопроектора. На основе треугольника Рело Ф. Ванкель сконструировал роторно-поршневой двигатель. Этот двигатель обладает множеством преимуществ перед обычным двигателем внутреннего сгорания, хотя есть и свои минусы. Первый автомобиль с этим двигателем выпустили (NSU Prince) выпустили в середине 60-х годов, а сейчас роторно-поршневой двигатель устанавливают на некоторые модели Mazda. В СССР тоже разрабатывали роторно-поршневые двигатели, но у нас они не получили развития по многим причинам. В Англии имеет форму кривой постоянной ширины, построенной на семиугольнике.

1. Диаметр фигуры

Рассмотрим круг диаметра d . Расстояние между любыми двумя точками М и N этого круга (рис.1) не превосходит d . В то же время можно найти две точки А и В нашего круга, удаленные друг от друга в точности на расстояние d .

Рассмотрим теперь вместо круга какую-нибудь другую фигуру. Что можно назвать "диаметром" этой фигуры?

Сказанное выше наводит на мысль назвать диаметром фигуры наибольшее из расстояний между ее точками. Иначе говоря, диаметром фигуры F (рис. 2) называется такое расстояние d , что, во-первых, расстояние между любыми двумя точками М и N фигуры не превосходит d , и, во-вторых, можно отыскать в фигуре F хотя бы одну пару точек А, В, расстояние между которыми в точности равно d .

Пусть, например, фигура F представляет собой полукруг (рис.3).

Обозначим через А и В концы ограничивающей его полуокружности. Тогда ясно, что диаметром фигуры F является длина отрезка АВ . Вообще, если фигура F представляет собой сегмент, ограниченный дугой l и хордой а, то в случае, когда дуга l не превосходит полуокружности, диаметр фигуры F равен а (т.е. длине хорды); в случае же, когда дуга l больше полуокружности, диаметр фигуры F совпадает с диаметром всего круга.

Понятно, что если F представляет собой многоугольник, то его диаметром является наибольшее из расстояний между вершинами. В частности, диаметр любого треугольника равен длине его наибольшей стороны. Приведенное определение диаметра фигуры неявно предполагает, что каждая рассматриваемая "фигура" представляет собой замкнутое множество (т.е. к фигуре причисляются все ее граничные точки). Например, если F — открытый круг диаметра d (т.е. круг, к которому не причисляются точки ограничивающей его окружности), то точная верхняя грань расстояний между двумя точками фигуры F равна d ; однако в этом случае не существует двух точек фигуры F , расстояние между которыми в точности равно d . Если же мы причислим к фигуре F все граничные точки (т.е. будем рассматривать замкнутый круг), то эта верхняя грань будет достигаться: найдутся две точки А и В , расстояние между которыми равно d .

2. Фигуры постоянной ширины

Пусть F — ограниченная выпуклая фигура и l — некоторая прямая. Проведем к фигуре F две опорные прямые, параллельные l (опорная прямая — прямая, имеющая хотя бы одну общую точку с фигурой F и вся фигура F расположена по одну сторону от l ).

Расстояние h между этими двумя опорными прямыми называется шириной фигуры F в направлении l .

Нетрудно заключить, что высота равностороннего треугольника является его наименьшей шириной, а его сторона — наибольшей шириной. У круга ширина в любом направлении одна и та же: она равна диаметру круга.

Существует бесконечное множество фигур постоянной ширины , т.е. таких выпуклых фигур, у которых во всех направлениях ширина одинакова. Простейшим примером такой фигуры является треугольник Релло , изображенный на рис.6. Он представляет собой пересечение трех кругов радиуса h , центры которых находятся в вершинах равностороннего треугольника со стороной h .

Вообще, если F — правильный многоугольник с нечетным числом вершин и h — длина наибольшей из его диагоналей, то, соединяя каждые две соседние его вершины дугой окружности радиуса h с центром в противоположной вершине, мы получаем фигуру постоянной ширины h (рис.7).


Это построение проходит и в том случае, если многоугольник диаметра h с нечетным числом сторон является правильным, но из каждой его вершины исходят две диагонали длины h (рис.8).

Прежде всего, отметим, что диаметр фигуры постоянной ширины равен ее ширине: d =h . Через каждую граничную точку фигуры постоянной ширины d проходит хотя бы один диаметр этой фигуры (т.е. хорда, имеющая длину d ). Границу фигуры постоянной ширины d нельзя разбить на две части меньшего диаметра.

Всякие два диаметра фигуры постоянной ширины всегда пересекаются (либо внутри фигуры, либо на ее границе, рис.8, 9). При этом, если два диаметра АВ и АС имеют общую граничную точку А , то дуга ВС радиуса d с центром в точке А целиком лежит на границе фигуры (рис.10).

Наконец, отметим, что если F — фигура постоянной ширины и АВ — ее диаметр, то прямые l1 и l2 , проходящие через точки А и В и перпендикулярные к отрезку АВ , являются опорными прямыми фигуры F (рис.11).

3. Кривые постоянной ширины и их свойства

Наши предки использовали колесо, круглые брёвна одинакового диаметра для перемещения огромных камней, плит, массивных скульптур, на которые ставили плоскую платформу с грузом. Такой способ возможен потому, что круг – фигура постоянной ширины. Но круг не единственная фигура постоянной ширины. Более того, таких фигур бесконечно много. Это могут быть симметричные фигуры, построенные на основе правильных многоугольников, так и несимметричные фигуры, одна из них – треугольник Рело.

Все кривые данной постоянной ширины имеют одинаковый периметр. Окружность и треугольник Рело выделяются из всего набора кривых данной ширины своими экстремальными свойствами. Окружность ограничивает максимальную площадь, а треугольник Рело — минимальную в классе кривых данной ширины.

К-во Просмотров: 395
Бесплатно скачать Курсовая работа: Фигуры постоянной ширины. Треугольник Рело