Курсовая работа: Фильтровальные перегородки

ВВЕДЕНИЕ

Роль фильтровальных перегородок в процессах производственного фильтрования часто и в значительной мере недооценивается, следствием чего являются затруднения в практическом осуществлении этих процессов. Не преувеличивая можно сказать, что фильтровальные перегородки представляют собой самую существенную часть фильтра и от правильного выбора их во многом зависят производительность фильтровального оборудования и чистота получаемого фильтрата. Подобно тому как это было сказано при рассмотрении вспомогательных веществ, при эмпирическом выборе фильтровальных перегородок надлежит руководствоваться следующим основным правилом: фильтровальная перегородка должна обладать максимальным размером пор и одновременно обеспечивать получение достаточно чистого фильтрата.


ФИЛЬТРОВАЛЬНЫЕ ПЕРЕГОРОДКИ

В общем случае фильтровальная перегородка должна обладать следующими свойствами: хорошо задерживать твердые частицы суспензии; иметь небольшое гидравлическое сопротивление потоку фильтрата; легко отделяться от осадка; обладать устойчивостью к химическому воздействию разделяемых веществ; не набухать при соприкосновении с жидкой фазой суспензии и промывной жидкостью; иметь достаточную, механическую прочность; обладать теплостойкостью при температуре фильтрования.

Известно большое число разнообразных по свойствам фильтровальных перегородок, изготавливаемых из неорганических и органических материалов. Все фильтровальные перегородки могут быть разделены на различные группы по нескольким признакам.

По принципу действия фильтровальные перегородки подразделяют [352] на поверхностные и глубинные.

Поверхностные фильтровальные перегородки отличаются тем, что твердые частицы суспензии при ее разделении в основном задерживаются на их поверхности, не проникая в поры. К таким перегородкам относятся, в частности, фильтровальная бумага, ткани, металлические сетки.

Глубинные фильтровальные перегородки, которые используются преимущественно для осветления жидкостей, характеризуются тем, что твердые частицы суспензии в процессе ее разделения в основном проникают в поры и задерживаются там. Это происходит вследствие того что поры таких перегородок значительно больше частиц суспензии, а концентрация последних недостаточна для образования сводиков над входами в поры. При этом частицы суспензии задерживаются в порах в результате адсорбции, осаждения и застревания. Как правило, глубинные фильтровальные перегородки не могут задерживать все частицы суспензии; задерживающая способность их составляет 90—99%. К числу рассматриваемых перегородок относятся, например, слои вспомогательного вещества и песка.

Некоторые фильтровальные перегородки могут действовать как поверхностные н как глубинные в зависимости от размера пор и свойств суспензии (размер частиц, концентрация их, вязкость жидкой фазы).

Фильтровальные перегородки могут быть классифицированы по материалам, из которых они изготовлены, например, на перегородки из хлопчатобумажных, шерстяных, синтетических, стеклянных, керамических, металлических материалов. Такая- классификация удобна при выборе фильтровальной перегородки с определенной способностью противостоять действию химически агрессивных веществ.

По структуре фильтровальные перегородки подразделяют [5] на гибкие и негибкие. При этом гибкие перегородки могут быть металлическими и неметаллическими, а также состоять из смешанных материалов. Негибкие перегородки могут быть жесткими (состоящими из связанных твердых частиц) или нежесткими (состоящими из несвязанных твердых частиц). Такая классификация принята в дальнейшем изложении.

Описание большого числа существующих в настоящее время разнообразных фильтровальных перегородок не является задачей данной главы. Далее кратко упомянуты свойства лишь ряда наиболее типичных: фильтровальных перегородок и даны некоторые указания по их выбору.

ГИБКИЕ ФИЛЬТРОВАЛЬНЫЕ ПЕРЕГОРОДКИ

Металлические перегородки [5,190] особенно пригодны для работы с химически агрессивными жидкостями, при повышенной температуре и в условиях значительных механических напряжений. Они изготавливаются в виде перфорированных листов, металлических сеток и тканей из углеродистой или нержавеющей стали, меди, латуни, бронзы, алюминия, никеля, серебра и различных сплавов.

Перфорированные листы и сетки используют для разделения суспензий, содержащих грубодисперсные твердые частицы, а так- же в качестве опорных перегородок для фильтровальных тканей и бумаги. Так, в процессе разделения- суспензий некоторых органи- ческих продуктов при давлении в несколько атмосфер и темпера- туре 90° С в плиточно-рамных фильтрпрессах применяют алюминиевые листы толщиной около 1 мм с 12—15 отверстиями диаметром 1,4 мм на 1 см2, покрытые фильтровальной бумагой. Можно отметить использование сетки из нержавеющей стали в качестве опорной перегородки для вспомогательного вещества (диатомита) в процессе очистки расплавленной серы фильтрованием[264].

Металлические ткани характеризуются способом переплетения -проволок, а также размером и формой отверстий и толщиной проволоки. При одном и том же числе отверстий на единицу длины размеры отверстий могут быть различными в зависимости от толщины проволоки. Металлические ткани могут изготавливаться с числом отверстий на 1 смг более 50000 и размером отверстий менее 20 мкм [363].

До некоторой степени промежуточное положение между гибкими и негибкими перегородками занимают плитки из металлических волокон диаметром 4—25 мкм (нетканые перегородки), которые по имеющимся сведениям успешно конкурируют с металлическими сетками и перегородками из спекшихся металлических порошков [455]. Такие плитки изготовляют, например, из нержавеющей стали, никеля, тантала и титайа; они отличаются большой аккумулирующей способностью по отношению к твердым частицам при значительной пропускной способности. Для регенерации плиток рекомендовано применение ультразвука.

Неметаллические перегородки наиболее распространены; их изготовляют в виде тканей или слоев несвязанных волокон (нетканые перегородки),'реже — в форме перфорированных листов.

Асбестовые ткани [190]. Асбест обладает хорошей теплостойкостью, а также устойчивостью к действию кислот (антифшь лит) и щелочей (хризотил). Однако асбестовая ткань отличается недостаточной механической прочностью и поэтому может применяться только в тех случаях, когда" фильтрование проводят при небольшой разности давлений и механические напряжения в ткани отсутствуют. Повышение механической прочности ткани сочетанием металлических и асбестовых или хлопчатобумажных и асбестовых нитей связано с трудностями, так как в первом случае нарушается однородность ткани, а во втором — уменьшается устойчивость ее к действию агрессивных жидкостей.

Стеклянные ткани [190—193] изготовляют из волокна различного диаметра и состава (в зависимости от агрессивных свойств суспензии).

Стеклянные ткани можно подрубать и сшивать стеклянными нитями; при этом образуются фильтровальные полотна или мешки. Хотя эти ткани отличаются большой прочностью при растяжении, они плохо сопротивляются истиранию, что объясняется недостаточной гибкостью индивидуальных волокон. Поэтому целесообразно подкладывать под стеклянную ткань резиновые маты, что удлиняет продолжительность службы ткани в 1,5—2 раза. Чтобы избежать повреждения ткани при удалении осадка, ее можно покрывать металлической сеткой или фильтровальной бумагой.

Описан [365] способ получения фильтровальной перегородки с регулируемым размером пор на основе стеклянной ткани, который состоит в следующем. Стеклянная ткань с ролика направляется на горизонтальный участок бесконечной поддерживающей ленты, где на нее сверху поступает суспензия стеклянных волокон, причем жидкая фаза суспензии отсасывается при помощи вакуума, после чего волокна высушиваются теплоизлучающим устройством; затем полученная фильтровальная перегородка навивается на другой ролик или предварительно пропитывается термопластичным веществом с последующим отверждением при прохождении печи с регулируемой температурой.

Хлопчатобумажные ткани [5, 232, 364] по сравнению со всеми остальными тканями используются наиболее широко. Они имеют ограниченную склонность к набуханию в некоторых жидкостях и применимы для разделения нейтральных суспензий при температуре до 100° С, а также суспензий, содержащих в жидкой фазе кислоты с концентрацией до 3% или щелочи с концентрацией до 10%, при 15—20° С. Однако при 90—100° С соляная кислота даже с концентрацией 1,5% разрушает хлопчатобумажную ткань в течение 1 ч. Азотная кислота оказывает такое же действие при концентрации 2,5%, а серная —5,0%. Фосфорная кислота с концентрацией 70% при 50—60° С разрушает ткань за шесть суток.

Вода и водные растворы сернокислого алюминия вызывают более или менее заметную усадку хлопчатобумажной ткани. В тех случаях, когда усадка ткани в процессе фильтрования нежелательна, ее перед помещением на фильтр обрабатывают жидкостью, вызывающей предварительную усадку.

Для фильтрования применяют различные хлопчатобумажные ткани, в частности бязь, миткаль; диагональ, бельтинг; в качестве подкладки под более тонкие ткани употребляют парусину. Ткани характеризуются [192] способом переплетения нитей, толщиной, шириной, весом единицы площади, степенью кручения нитей и числом нитей основы и утка на единице длины. Эти характеристики определяют свойства хлопчатобумажных тканей применительно к процессу фильтрования, причем иногда даже небольшие изменения характеристики ткани являются причиной заметных изменений ее свойств как фильтровальной перегородки. К числу таких свойств, влияющих на выбор ткани для, разделения суспензии в данных условиях, относятся прочность на растяжение, способность задерживать твердые частицы суспензии, проницаемость по отношению к фильтрату, способность отделяться от осадка, склонность к закупориванию пор твердыми частицами.

Многие хлопчатобумажные ткани имеют шероховатую поверхность вследствие наличия на ней выступающих концов волокон. Это способствует задерживанию на поверхности ткани твердых частиц в начале фильтрования, когда осадок еще не образовался, но затрудняет отделение осадка от ткани. Более гладкую поверхность можно получить растворением концов волокон при кратковременной обработке ткани аммиачным раствором окиси меди. Образующийся при этом раствор целлюлозы во время последующей сушки остается на ткани, что вызывает небольшое уменьшение поперечного сечения пор. Выступающие концы волокон можно также опалить. Очень гладкую поверхность имеют мерсеризованные ткани, т. е. ткани, которые были кратковременно погружены в охлажденный концентрированный раствор едкого натра.

Нитрованные хлопчатобумажные ткани. Нитрованная хлопчатобумажная ткань имеет приблизительно такую же толщину и структуру, как обычная хлопчатобумажная ткань, но отличается более твердой поверхностью; кроме того, от нее легче отделяется осадок. Сопротивление разрыву этой ткани составляет 70—80% сопротивления хлопчатобумажной ткани, из которой она получается. Нитрованная хлопчатобумажная ткань устойчива к действию достаточно концентрированных серной и азотной кислот и их смесей, а также к действию соляной кислоты, растворов гипохлорита и хлористого цинка. Под действием омыляющих и восстанавливающих веществ, а также органических растворителей эта ткань разрушается. Существенным недостатком нитрованной хлопчатобумажной ткани является ее огнеопасность. В связи с этим такая ткань в настоящее время применяется крайне редко.

Шерстяные ткани [5, 364] изготавливают, главным образом, из овечьей шерсти в виде сукна различных сортов, байки и войлока. Они значительно устойчивее, чем хлопчатобумажные ткани, к действию растворив кислот и кислых солей, но разрушаются при действии щелочей и повышенной температуре. Продолжительность их службы в среде с концентрацией минеральной кислоты 5—67о приблизительно такая же, как хлопчатобумажной ткани в нейтральной среде. На них не действует сернистая кислота, но растворы хлорноватистокислых солей натрия и кальция разрушают их. При очистке шерстяную ткань следует обрабатывать холодными промывными жидкостями. Если шерстяную ткань используют через некоторое время после промывки, ее следует по возможности быстро высушить и затем подвесить в сухом помещении. Шерстяные ткани значительно уступают по задерживающей способности и прочности хлопчатобумажным, но превосходят их по своим упругим свойствам.

Ткани, полученные из верблюжьей шерсти, отличаются значительной устойчивостью к действию минеральных кислот.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 183
Бесплатно скачать Курсовая работа: Фильтровальные перегородки