Курсовая работа: Фильтровальные перегородки

Так, описан [452] патрон, изготовленный из листа, полученного прокаткой и спеканием специального порошка титана с содержанием 85—90% частиц размером до 60 мкм; пористость листа 38— 43%, максимальный размер его пор 5—6 мкм, прочность на растяжение 3—5 н • смтК

Металлические перегородки могут применяться в процессах фильтрования с закупориванием пор и с образованием осадка, причем регенерацию их удобно осуществлять в первом случае растворением твердых частиц в порах подходящей- жидкостью, а во втором— обратным толчком фильтрата или подходящего газа.

Керамические перегородки изготовляют из предварительно измельченного и просеянного кварца или шамота, который затем тщательно смешивают со связующим веществом, например тонкодисперсным силикатным стеклом, и обжигают [204]. Перегородки из кварца устойчивы к действию концентрированных минеральных кислот, но нестойки к действию слабощелочных или нейтральных водных растворов солей. Перегородки из шамота хорошо сопротивляются воздействию разбавленных и концентрированных минеральных кислот и водных растворов их солей, но мало устойчивы к действию щелочных жидкостей [372].

Шероховатая поверхность керамической фильтровальной перегородки способствует адсорбции частиц и образованию сводиков над порами в процессе разделения суспензии.

При обжиге смеси шамота и связующего вещества получают также крупные блоки, из которых после медленного охлаждения вырезают однородные по свойствам фильтровальные перегородки нужной формы. Используя в качестве связующего вещества синтетические, например феноло-формальдегидные, полимеры, путем их отверждения при относительно невысоких температурах получают керамические фильтровальные перегородки, не содержащие замкнутых, не проницаемых для жидкости пор.

Описан способ изготовления керамических перегородок смешением кварцевого порошка со смесью термореактивной смолы и растворителя с последующим испарением растворителя, классификацией по размерам частиц кварца, покрытых пленкой смолы толщиной 0,1 диаметра частиц, и горячим прессованием. Полученные таким образом перегородки могут иметь форму пластин или полых цилиндров [373].

Стеклянные перегородки получают спеканием различных фракций измельченного кварцевого стекла (без добавления связующего вещества) или обжигом измельченной смеси кварцевого и боросиликатного стекол с последующей обработкой изделия соляной кислотой для удаления химически нестойких компонентов [204]. Такие перегородки обычно выпускают --в виде круглых дисков диаметром 10—200 мм с равномерными порами и применяют главным образом для лабораторных работ; однако их можно использовать и в заводских условиях, в частности в виде патронов.

Диатомитовые перегородки. Разнообразная форма и относительно одинаковые размеры частиц диатомита, свойства которого как вспомогательного вещества были рассмотрены в предыдущей главе, обусловливают высокую эффективность таких перегородок, задерживающих твердые частицы размером менее 1 мкм и даже некоторые виды бактерий. Перегородки в форме пластин и патронов получают обжигом смеси диатомита и связующего вещества.

Угольные перегородки. Пористые угольные перегородки получают смешением определенной фракции измельченного кокса с антраценовой фракцией каменноугольной смолы и последующим формованием образующейся смеси под давлением, сушкой формованных изделий и нагреванием их в восстановительном пламени [7]. Эти перегородки отличаются механической прочностью и устойчивостью к действию кислот и щелочей.

Эбонитовые перегородки. Для их получения частично вулканизованный каучук измельчают, прессуют в формах и подвергают окончательной вулканизации. Эти перегородки устойчивы к действию кислот, растворов солей и щелочей. Для разделения суспензий перегородки из некоторых сортов эбонита могут быть использованы при температурах от —10 до +110° С [7].

Пенопластовые перегородки [453]. Пенопласта, применяемые для изготовления фильтровальных перегородок, получаются на основе полнвинилхлорида, полиуретана, полиэтилена, полипропилена и других полимерных материалов. Пенопластовые перегородки экономичны, так как исходное сырье и способ их изготовления недороги.

Перегородки из сплавленной окиси алюминия обладают относительно высокой пористостью I) устойчивостью к резким изменениям температуры [5]. В виде плиток они применяются главным образом в фильтрах с ложным дном, где их используют в качестве фильтровальных или опорных перегородок, на которые помещают слой песка или другого сыпучего материала.

Перегородки из природных камней. Фильтровальные перегородки в виде плиток, вырезанных или выпиленных из некоторых сортов песчаника, использовались раньше в нутчах. Вследствие того, что такие перегородки отличаются недостаточно равномерным распределением пор, в настоящее время они заменены керамическими перегородками.

Нежесткие перегородки. Эти перегородки состоят из соприкасающихся, жестко не связанных твердых частиц каменного, древесного и животного углей, кокса, диатомита, отбеливающей глины, песка, а также некоторых неорганических солей. По сравнению с перегородками других типов они относительно дешевы и имеют то преимущество, что могут поддерживаться в чистом состоянии промывкой, сопровождающейся изменением взаимного расположения твердых частиц в результате перемешивания. Недостатком таких перегородок является возможность их применения только при наличии горизонтальной опорной перегородки. Проницаемость таких перегородок по отношению к жидкой фазе суспензии и способность задерживать ее твердую фазу в значительной мере определяется размером и формой составляющих перегородку частиц. В некоторых случаях действие этих перегородок основано не только на механическом задерживании твердой фазы суспензии, но и на адсорбции взвешенных и растворенных веществ на поверхности твердых частиц.

указания по выбору фильтровальных перегородок

Ввиду очень большого разнообразия типов фильтровальных перегородок, конструкций фильтров, свойств суспензий и условий их разделения выбор наиболее подходящей фильтровальной перегородки весьма сложен. Уже соблюдение упомянутого в начале этой главы основного правила выбора вызывает затруднение, поскольку увеличение или уменьшение размера пор действует в противоположном направлении на скорость фильтрования и задерживающую способность.

Указанное затруднение возрастает в связи с рядом других требований, одновременное выполнение которых нельзя достигнуть выбором одной из имеющихся фильтровальных перегородок. Поэтому выбор нередко сводится к нахождению наиболее разумного компромисса между различными, взаимно противоречивыми требованиями, предъявляемыми к фильтровальной перегородке в данных условиях разделения суспензии. Вследствие этого перед выбором необходимо предварительно решить некоторые вопросы, например: следует ли стремиться в первую очередь к повышению скорости фильтрования пли улучшению чистоты фильтрата, а также является ли более существенной стоимость фильтровальной перегородки или продолжительность ее службы. В некоторых случаях относительно дорогая фильтровальная перегородка, например ткань из определенного синтетического материала, оказывается единственно подходящей в данных условиях разделения суспензии, что практически исключает экономические соображения при выборе.

Таким образом, выбор можно сделать только при учете всех требований, предъявляемых к фильтровальной перегородке; невозможно переходить от требования к требованию, логически устраняя перегородки до тех пор, пока после рассмотрения последнего требования не останется одна идеальная перегородка [354].

Нельзя себе представить некоторый общий порядок выбора фильтровальных перегородок, пригодный без изменения по крайней мере для большинства встречающихся на практике случаев. В каждом индивидуальном случае при выборе надлежит руководствоваться специфическими соображениями, определяемыми особенностями данного процесса разделения суспензии. Однако можно наметить общую схему выбора и последовательность испытаний применительно к большой группе фильтровальных перегородок одного типа, например к фильтровальным тканям.

Существует три способа испытаний фильтровальных перегородок— лабораторный, полузаводской и заводской. Лабораторный способ особенно быстр и экономичен, но получаемые при этом результаты часто ненадежны и должны поэтому рассматриваться как предварительные. Полузаводскиё испытания дают результаты, приближающиеся к заводским данным. Наиболее надежные результаты обеспечивают испытания в заводских условиях. При этом следует руководствоваться правилом, чтобы вся поверхность заводского фильтра (а не часть ее) состояла из исследуемой фильтровальной перегородки.

Различные фильтровальные перегородки, независимо от использования их в дальнейшем для разделения суспензии с определенными характеристиками, отличаются рядом свойств, из числа которых здесь кратко рассмотрены проницаемость по отношению к чистой жидкости, задерживающая способность по отношению к твердым частицам известного размера и распределение пор по размерам. Эти свойства исследуются в лаборатории, служат для сравнения фильтровальных перегородек и учитываются при их выборе.

Проницаемость по отношению к чистой жидкости, обычно воде, можно определить с помощью различных приборов [364], принцип действия которых основан на измерении объема фильтрата, полученного в течение определенного времени при соответствующей разности давлений и известной поверхности фильтрования. Проницаемость целесообразно выражать в виде гидравлического сопротивления фильтровальной перегородки. Определение гидравлического сопротивления фильтровальных перегородок путем расчета на основании данных об их структуре, как правило, затруднено ввиду недостаточной четкости характеристик такой структуры. Однако для наиболее простых по структуре фильтровальных перегородок рекомендованы соотношения, позволяющие рассчитать гидравлическое сопротивление.

Так, дана [456] зависимость гидравлического сопротивления ткани из монофиламентного волокна от диаметра нитей и пористости ткани. Исходя из модели неподвижного слоя частиц, получено [457] выражение для гидравлического сопротивления металлических тканей.

При оценке свойств и выборе ткани, а также других фильтровальных перегородок следует принимать во внимание, что гидравлическое сопротивление перегородки постепенно возрастает при увеличении числа циклов работы фильтра периодического действия или продолжительности работы фильтра непрерывного действия. При этом возрастание сопротивления происходит сначала относительно быстро, а затем замедляется. В частности, зависимость сопротивления ткани от числа циклов работы фильтра выражена [434] ранее приведенным уравнением (VIII, 406).

Задерживающая способность по отношению к твердым частицам, например сферическим частицам полистирола определенного размера, находится из опытов, в которых устанавливают содержание этих частиц в фильтруемой жидкости до фильтровальной перегородки и после нее. При этом содержание твердых частиц в пробах жидкости, взятых до фильтровальной перегородки и после нее, находят отстаиванием или дополнительным фильтрованием сквозь п

К-во Просмотров: 186
Бесплатно скачать Курсовая работа: Фильтровальные перегородки