Курсовая работа: Формирование пространственного мышления при изучении векторного пространства у учащихся основной школы

Все сказанное пока еще не дает понятие вектора достаточно содержательным и полезным. Большую содержательность и богатую возможность приложений понятие вектора получает тогда, когда мы вводим своеобразную «геометрическую арифметику» – арифметику векторов, позволяющую складывать векторы, вычитать их и производить над ними целый ряд других операций. Отметим в связи с этим, что ведь и понятие числа становится интересным лишь при введении арифметических действий, а не само по себе.

Суммой векторов а и в с координатами а1, а2 и в1, в2 называется вектор с с координатами а1 + в1, а2 + в2, т.е.


а (а1; а2) + в (в1;в2) = с (а1 + в1; а2 + в2).

Следствие:

а + в = в + а , (коммутативность)

а + ( в + с ) = (а + в) + с. (ассоциативность)

Для доказательства коммутативности сложения векторов на плоскости необходимо рассмотреть пример.

а и в – векторы (рис.5).

Пусть ОА =а, ОВ = в.

1. Строим параллелограмм ОАСВ: АМ II ОВ, ВН II ОА.

2. а = ОА = ВС,

в = ОВ = АС, т.к. параллелограмм.

3. ОА + АС = ОВ + ВС = ОС, значит а + в = в + а. ч.т.д.

Для доказательства ассоциативности мы отложим от произвольной точки О вектор ОА = а, от точки А вектор АВ = в и от точки в – вектор ВС = с. Тогда мы имеем: АВ + ВС =АС.

(а + в ) + с = (ОА + АВ) + ВС = ОВ + ВС = ОС,

а + (в + с ) = ОА + (АВ + ВС) = ОА + АС = ОС,

откуда и следует равенство


а + ( в + с ) = (а + в) + с.

Заметим, что приведенное доказательство совсем не использует чертежа. Это характерно (при некотором навыке) для решения задач при помощи векторов.

Остановимся теперь на случае, когда векторы а и в направлены в противоположные стороны и имеют равные длины; такие векторы называют противоположными. Наше правило сложения векторов приводит к тому, что сумма двух противоположных векторов представляет собой «вектор», имеющий нулевую длину и не имеющий никакого направления; этот «вектор» изображается «отрезком нулевой длины», т.е. точкой. Но это тоже вектор, который называется нулевым и обозначается символом 0.

Равенство векторов.

Два вектора называются равными, если они совмещаются параллельным переносом. Это означает, что существует параллельный перенос, который переводит начало и конец одного вектора соответственно в начало и конец другого вектора.

Из данного определения равенства векторов следует, что разные векторы одинаково направлены и равны по абсолютной величине.

И обратно: если векторы одинаково направлены и равны по абсолютной величине, то они равны.

Действительно, пусть векторы АВ и СD – одинаково направленные векторы, равные по абсолютной величине (рис.6). Параллельный перенос, переводящий точку С в точку А, совмещает полупрямую СD с полупрямой АВ, так как они одинаково направлены. А так как отрезки АВ и CD равны, то при этом точка D совмещается с точкой В, то есть параллельный перенос переводит вектор CD в вектор АВ. Значит, векторы АВ и СD равны, что и требовалось доказать.

Скалярное произведение двух векторов и его свойства.

Скалярным произведением двух нулевых векторов называется число, равное произведению числовых значений длин этих векторов на косинус угла между векторами.

Обозначение:

а х в = IaI * IbI * cos ( а, в).

Свойства скалярного произведения:

1. а х в = в х а.

К-во Просмотров: 278
Бесплатно скачать Курсовая работа: Формирование пространственного мышления при изучении векторного пространства у учащихся основной школы