Курсовая работа: Формирование пространственного мышления при изучении векторного пространства у учащихся основной школы

Выражение а х а будем обозначать а2 и называть скалярным квадратом вектора а.

Свойства операций над векторами.

Имеют место следующие теоремы об операциях над векторами, заданными в координатной форме.

1. Пусть даны а = (ах, аy, аz) и в = ( вx, ву, вz), тогда сумма этих векторов есть вектор с, координаты которого равны сумме одноименных координат слагаемых векторов, т.е. с = а + в = (ах + вx; аy + ву; аz + вz).

Пример 1.

а = ( 3; 4; 6) и в = ( -1; 4; -3), тогда с = ( 3 + ( -1); 4 + 4; 6 + (-3)) = ( 2; 8; 3).

2. а = (ах, аy, аz) и в = ( вx, ву, вz), тогда разность этих векторов есть вектор с , координаты которого равны разности одноименных координат данных векторов, т.е. с = а - в = (ах - вx; аy - ву; аz - вz).

Пример 2.

а = ( -2; 8; -3) и в = ( -4; -5; 0), тогда с = а – в = ( -2 – ( -4 ); 8 – ( -5 ); -3 –0 ) = = ( 2; -13; -3).

3. При умножении вектора а = (ах, аy, аz) на число м все его координаты умножаются на это число, т.е. ма = ( мах, маy, маz).

Пример 3.

а = ( -8; 4; 0) и м = 3, тогда 3а = ( -8 х 3; 4 х 3; 0 х 3) = ( -24; 12; 0).

Понятие вектора, которое нашло широкое распространение в прикладных науках, явилось плодотворным и в геометрии. Аппарат векторной алгебры позволил упростить изложение некоторых сложных геометрических понятий, доказательства некоторых теорем школьного курса геометрии, позволил создать особый метод решения различных геометрических задач.

Рассмотрим доказательство некоторых теорем с помощью векторов.

Теорема 1.

Диагонали ромба взаимно перпендикулярны.

Доказательство.

Пусть АВСD – данный ромб (рис.7). Введем обозначения: АВ = а, ВС = в. Из определения ромба: АВ = DC = а, AD = ВС = в.

По определению суммы и разности векторов АС = а + в; DВ = а – в.

Рассмотрим АС * DВ = (а + в )( а – в) = а2 – в2 .

Так как стороны ромба равны, то а = в. Следовательно, AC * DB =0. Из последнего получаем АС DВ, т.е. DB АС. Ч.т.д.

Выясним, что можно сказать о тех множествах, между элементами которых отображение устанавливает соответствие. Рассмотрим плоскость. Выберем на ней некоторую точку, назовем ее нулем и обозначим знаком . После этого с любой точкой плоскости мы можем связать вектор (такой, каким его представляют в школе: направленным отрезком, стрелочкой, идущей из точки в любую точку плоскости). Теперь множество точек плоскости можно трактовать как множество векторов, имеющих общее начало в точке . Эта трактовка есть, разумеется, не что иное, как взаимно однозначное отображение множества точек плоскости на множество компланарных вектоpов, выходящих из точки . Пусть две точки и лежат на одной пpямой с точкой (или, что то же, два вектоpа и лежат на одной пpямой). Допустим, каким-то обpазом мы умеем измеpять длину. Обозначим длину вектоpа чеpез . Если

,

то будем говоpить, что

,

когда и лежат по одну стоpону от точки , и

,

когда они лежат по pазные стоpоны (pис.1 а).

Таким обpазом, мы опpеделили умножение вектоpа на число. Далее, пусть и -- два пpоизвольных вектоpа. Опpеделим их сумму как вектоp, напpавленный по диагонали паpаллелогpамма, постpоенного на этих вектоpах, длина которого pавна длине диагонали, т.е.

К-во Просмотров: 276
Бесплатно скачать Курсовая работа: Формирование пространственного мышления при изучении векторного пространства у учащихся основной школы