Курсовая работа: Формування об’ємних зображень на основі фотографій

Проекційні методи - це методи, у яких синтез зображення виконується за допомогою афінних перетворень і перетворень проекції. Тривимірна сцена як набір примітивів візуалізації (звичайно, багатокутників, точок, ліній тощо) трансформується у двомірний масив, що і відображається на екрані монітора.

Методи трасування променів працюють на рівні пікселів вихідного зображення, розраховуючи їхні кольори на основі даних про геометрію сцени і положення віртуальної камери.

Сьогодні інтерактивну швидкість синтезу зображень надають тільки проекційні методи, часто за підтримкою апаратного забезпечення. Надалі в роботі розглядаються тільки такі методи, які в свою чергу накладають деякі обмеження на можливі подання об'єктів. Характерною рисою поставленого завдання є робота з реальними даним, тобто даними, введеними в комп'ютер за допомогою пристроїв дистанційного сканування. Такі дані, в більшості випадків, дискретні й задані явно, звичайно у вигляді набору точок або набору карт глибини. Крім того, за винятком томографів (цей випадок у роботі не розглядається), що одержують внутрішню структуру об’єкта, всі сканери працюють тільки з поверхнею об’єкта. Таким чином, подання повинне гарно описувати явно задані дискретні поверхні.

Проведемо аналіз різних подань із метою виявлення придатності їхнього використання для рішення поставленого завдання. У тексті не розглядаються різні параметричні й процедурні подання тому, що їх особливості (складність обчислень, відсутність апаратної підтримки) роблять складним використання цих подань для моделювання реальних об'єктів.

2.1.2 Полігональні сітки

Полігональні сітки є на даний момент найпоширенішим поданням, для якого створене велика кількість програмного забезпечення, що дозволяє редагувати, передавати по мережі й відображати моделі з використанням апаратної підтримки.

Характерною рисою полігональних сіток є підтримка зв’язності моделі. У силу цього полігональні подання добре пристосовані для опису великої кількості синтетичних поверхонь.

Однак, відскановані дані, споконвічно не містять інформації про зв’язність й безперервність поверхонь, а являють собою набір близько розташованих часток (sample). Такі обмеження випливають із пристрою скануючого механізму, що має дискретний крок кінцевого розширення.

Отже, для використання полігональних моделей зв’язність повинна бути введена штучно на етапі препроцесуванні. Таким чином, полігональні моделі не призначені для прямої роботи з від сканованими даними, тому що вимагають відновлення поверхні, що в загальному випадку є нетривіальним завданням і сильно залежить від класу оброблюваних об'єктів. При цьому відновлена поверхня не обов'язково буде використовуватися на етапі візуалізації (наприклад, якщо модель такої складності, що проекція трикутника на екран при типовій проекції перегляду близька по площі з одним пікселем).

З іншого боку, створена велика кількість методів, що дозволяють досить ефективно перетворювати дискретні від скановані дані в полігональні сітки. Більше того, сучасне устаткування високого класу дозволяє виконувати перетворення в сітку апаратно [1].

Набагато складніше ситуація з поданням великих обсягів даних і підтримкою різних рівнів деталізації. Структура полігональних сіток лінійна й вони не забезпечують «природної» підтримки багатомасштабності. Тому робота з великими сітками ускладнена і потребує різних, найчастіше обчислювально складних методів спрощення. Було створено безліч алгоритмів для створення багатомасштабних подань на основі сіток, що мають безпосереднє відношення до поставленого завдання.

Практично всі технології спрощення сіток використовують деякі варіації або комбінації наступних механізмів: семплюваня (sampling), проріджування (decimation), адаптивної розбивки (adaptive subdivision) і злиття вершин (vertex merging) [2].

Алгоритми семплюваня спрощують первісну геометрію моделі, використовуючи або підмножину вихідних точок, або перетинання вокселів з моделлю на тривимірній сітці. Такі алгоритми найкраще працюють на гладких поверхнях без гострих кутів.

Алгоритми, що використовують адаптивну розбивку, знаходять просту базову (base) сітку, що потім рекурсивно розбивається для апроксимації первісної моделі. Такий підхід працює добре, коли знайти базову модель відносно просто. Наприклад, базова модель для ділянки ландшафту звичайно прямокутник. Для досягнення гарних результатів на довільних моделях потрібне створення базової моделі, що відбиває важливі властивості вихідної, що може бути нетривіально.

Проріджуючи алгоритм, ітеративно видаляє вершини або грані з полігональної сітки, роблячи тріангуляцію після кожного кроку. Більшість із них використають тільки локальні зміни, що дозволяє виконувати спрощення досить швидко (рис. 2.1).

Рис.2.1. Об’єднання ребер (процес тріангуляції)

Схеми зі злиттям вершин працюють за допомогою об’єднання двох або більше вершин деталізованої моделі в одну, котра у свою чергу може бути сполучена з іншими вершинами. Злиття вершин трикутника знищує його, зменшуючи загальне число трикутників моделі. Звичайно алгоритми використовують складні методи визначення, які вершини потрібно об’єднати разом і у якому порядку. Методи, що використовують злиття ребер (edge collapse), завжди зливають вершини, що розділяють одну грань. Такі методи зберігають локальну топологію і, крім того, при деяких умовах можуть працювати в реальному часі.

Складність обчислень у цих методах висока і їхнє використання не завжди виправдане при роботі з дискретними даними, оскільки складність з'являється насамперед через необхідність підтримувати зв’язаність моделі. Іншою причиною високої складності методів є лінійна структура сітки, яку необхідно відновлювати для візуалізації за допомогою графічних API.

Переваги даного алгоритму: розповсюджене представлення; апаратна підтримка.

Недоліки алгоритму: неефективні для роботи з дискретними даними через штучну підтримку зв’язності, складного препроцесінга; неефективні для більших моделей через труднощі з організацією багатомасштабності.

2.1.3 Воксельні моделі

Класичні воксельні (voxel) моделі являють собою тривимірний масив, кожному елементу якого зіставлений колір й коефіцієнт прозорості. Такий масив задає наближення об’єкта з точністю, обумовленої обмеженням масиву.

Воксельні (або об'ємними) методами візуалізації називаються методи візуалізації тривимірних функцій, у дискретному випадку заданих, наприклад, за допомогою описаного вище масиву.

Типові методи воксельної візуалізації обробляють масив, і формують проекцію кожного його елемента на видову площину. Вихідний масив являє собою регулярну структуру даних, що істотно використовується в методах візуалізації. Звичайно елемент масиву з’являється на екрані у вигляді деякого примітиву, так званого відбитку (footprint) або сплату (splat). Різні методи відрізняються способами обчислень форми й розмірів зображення[3].

Обсяги даних у воксельних поданнях значні, навіть для невеликих моделей. Єдиною реальною можливістю працювати зі складними об'єктами є використання деревоподібних ієрархій. У роботі Лаур Д. та Ханрахана П. на основі вихідного масиву будується багатомасштабне подання у вигляді восьмеричного дерева. Кожен вузол дерева містить усереднене значення кольорів і прозорості всіх своїх нащадків. Крім того, кожен вузол дерева містить змінну, що показує середню помилку, асоційовану з даним вузлом. Ця змінна показує помилку, що виникає при заміні оригінального набору вокселів в даній області простору на константну функцію, рівну середньому значенню кольорів всіх нащадків даного вузла. Надалі це значення використовується для керування якістю візуалізації й рівнем деталей.

Незважаючи на те, що воксельні методи орієнтовані в першу чергу на наукову візуалізацію, багато ідей, що використовується в цих методах, знаходять своє застосування в інших областях. Наприклад, ідея решітки використається при роботі із точковими поданнями, а також з поданнями, заснованими на зображеннях.

Переваги даного алгоритму: простота регулярної структури; апаратна підтримка.

Недоліки даного алгоритму: великий обсяг даних, тому необхідно використовувати спеціальні багатомаштабні структури для роботи зі складними об'єктами; використовувані структури даних зберігають внутрішньої, невидимі, частини об’єкта, тоді як для поставленого завдання достатній опис поверхні.

2.1.4 Моделі, засновані на зображеннях

Моделювання й візуалізація, засновані на зображеннях (Image-Based Modeling and Rendering, далі IBMR) являють собою альтернативний підхід до рішення завдань синтезу зображення [4].

Такі методи не використовують проміжні структури даних, і синтезують підсумкову картинку, ґрунтуючись на вихідних даних - як правило, зображеннях або зображеннях з глибиною. Більш формально метод візуалізації, заснований на зображеннях, можна визначити як алгоритм, що визначає, як по кінцевому наборі вихідних (reference) зображень сцени одержати нове, результуюче (resulting) зображення для заданої точки спостереження й заданих параметрів віртуальної камери.

К-во Просмотров: 242
Бесплатно скачать Курсовая работа: Формування об’ємних зображень на основі фотографій