Курсовая работа: Формування в учнів обчислювальних навичок з табличного і позатабличного множення і ділення
Читають цей запис так: по 5 узяти 4 рази, буде 20. (Діти повторюють.) Можна прочитати інакше: 5 помножити на 4, буде 20. (Повторюють.) Тут виконали дію множення. Додавання однакових доданків називають множенням. (Повторюють.) Множення позначають знаком – крапкою. Що показує в цьому записі число 5? (Число 5 береться як доданок.) Що показує число 4? (Скільки разів узяли доданком число 5.)
Потім розв’язують кілька вправ на заміну суми добутком. При цьому діти встановлюють, що показує кожне число в новому записі. Потім пропонують обернені вправи: на заміну добутку сумою. Наприклад, пропонують знайти результат: 3 • 4.
Прочитайте приклад. (З помножити на 4.) Що в ньому записі показує число 3? (Це число береться як доданок.) Що означає число 4? (Стільки береться доданків.) Замінимо приклад на множення прикладом на додавання. Запис: 3 + 3 + 3 + 3 = 12.
Щоб засвоїти зв’язок множення з додаванням, корисно розглянути такі вправи: читання прикладів на множення, записування аналогічних прикладів під диктовку спочатку вчителя, а потім учня, складання учнями прикладів на додавання і множення, розв’язування простих задач на знаходження добутку додаванням і множенням.
Дуже важливо, щоб учні зрозуміли, за яких умов можна замінювати суму добутком і коли це неможливо. Цьому допомагає розв’язування прикладів з однаковими і різними доданками.
На дошці приклад: 7 + 7 + 7.
Замініть приклад на додавання прикладом на множення (7 • 3.) Чи можна приклад 2 + 3 + 7 замінити прикладом на множення? (Не можна.) Чому? (Доданки різні. Доданки неоднакові.) Чи завжди можна приклад на додавання замінити прикладом на множення? (Не завжди.) Коли це можна зробити? (Коли доданки однакові.)
Можна запропонувати: скласти з однаковими числами приклади на додавання і множення, користуючись рисунками (рис. 1).
Рис. 1
З’ясувати, чим схожі і чим відрізняються ці приклади.
Доцільно за даними прикладами (4 + 3 і 4 • 3) зробити малюнки, знайти результати і порівняти приклади.
Корисні вправи з рівностями і нерівностями, наприклад: Порівняйте вирази і поставте знак «>», «<», «=»:
18 • 2 * 18 • 3
4 + 4 + 4 * 4 • 2
3 • 4 * 2 • 4
4 • 7 + 4 * 4 • 9
Наведемо пояснення учня під час виконання останнього завдання: зліва додали сім четвірок та ще додали одну – всього стало 8 четвірок, а справа їх 9. Зліва четвірок менше, ніж справа, отже, вираз зліва менший; поставимо знак «<».
Під час виконання вправ треба звертати увагу учнів на прийнятий у нашій країні порядок розміщення множників у записі множення: на першому місці пишуть число, яке береться доданком, а на другому – число, яке показує, скільки береться однакових доданків.
Зауважимо, що для вправ можна використовувати приклади не лише з одноцифровими множниками (4 • 3), а й з двоцифровими (12 • 3). Це роблять для того, щоб учні на цьому ступені практично користувалися відомим їм взаємозв’язком між множенням і додаванням, вправлялися у виконанні різних випадків додавання.
На цьому етапі учні не повинні запам’ятовувати напам’ять результати множення.
Конкретний зміст ділення розкривають у процесі розв’язування задач спочатку на ділення на вміщення, а потім на рівні частини.
У зв’язку з цим учні повинні вміти виконувати за умовою задачі операцію розбиття множини на ряд рівночисельних множин; розуміти, що з цією операцією пов’язана дія ділення; навчитися записувати розв’язування задач за допомогою цієї дії.
Учні II класу ознайомлюються з назвами компонентів і результатів дій множення і ділення: перший множник, другий множник, добуток, пізніше – ділене, дільник, частка. Тут же діти дізнаються, що терміни «добуток» і «частка» означають не лише результат дії, а й відповідний вираз, наприклад: 4 • 3 і 20: 5.
Наступний крок у вивченні дії множення – розкриття переставної властивості множення. Знати цю властивість насамперед для засвоєння дії множення, а крім того, знання цієї властивості дає можливість майже вдвічі скоротити кількість випадків, які треба вивчити напам’ять. Замість двох випадків (8 • 3 і 3 • 8) учні запам’ятовують лише один.
Переставну властивість множення учні можуть «відкрити» самостійно, використовуючи наочні посібники у вигляді рядів кліток (кружків, ґудзиків, зірочок тощо). Наприклад, діти креслять прямокутник, ділять його на квадрати (рис. 2).
Рис. 2
Їм пропонують дізнатися двома способами, скільки всього буде квадратів (4 • 3 = 12 і 3 • 4 = 12). Порівнявши ці приклади, учні помічають, що множники однакові, тільки помінялися місцями, добутки однакові.