Курсовая работа: Формування в учнів обчислювальних навичок з табличного і позатабличного множення і ділення

Особливу увагу треба приділити вправам на знаходження результату ділення за відомим добутком. Нехай треба розв’язати приклад на ділення: 24: 6, якщо дано приклад на множення: 6 • 4=24. Учень міркує: 24 – добуток, а 6 – перший множник; якщо добуток 24 поділити на перший множник 6, то дістанемо другий множник 4.

Пізніше аналогічно розв’язують питання про знаходження невідомого діленого і дільника.

Далі доцільно розглянути питання про узагальнення двох видів ділення.

У зв’язку з тим що конкретний зміст дії ділення розкривали за допомогою розв’язування простих задач на ділення на вміщення і на рівні частини, в учнів може виникнути неправильне уявлення про дію ділення: ніби існує дві різні дії ділення. Тому дуже важливо показати дітям, що незалежно від того, чи ділимо на вміщення чи на рівні частини, дістанемо однакові частки, якщо ділимо ті самі числа.

До узагальнення двох видів ділення учнів підводять за допомогою порівняння розв’язувань пар простих задач з однаковими числовими даними на ділення на вміщення і на ділення на рівні частини. Наприклад, пропонують розв’язати таку пару задач:

1) 12 яблук розклали на 4 блюдечка порівну. Скільки яблук у кожному блюдечку?

2) 12 яблук розклали в блюдечка по 4 яблука. Скільки потрібно було блюдечок?

Записавши розв’язання кожної задачі і відповіді до них, встановлюють схоже і різне в задачах, розв’язаннях і відповідях. Особливу увагу звертають на однакові дані числа 12 і 4 і на однакові числа у відповідях 3. Виконавши кілька аналогічних вправ, учні з’ясовують, що в обох випадках при однакових ділених і однакових дільниках дістаємо однакові частки.

На цьому самому етапі вивчають прийоми для випадків множення і ділення з числами 1 і 10. Розкриваючи прийоми, учні застосовуватимуть тільки що здобуті знання, а отже, краще їх засвоять. Крім того, вони опанують прийоми, на основі яких швидко знаходитимуть результати, тому відпаде потреба їх заучувати.

Спочатку розглядають випадок множення одиниці на числа, більші за одиницю. Учні розв’язують ряд прикладів, знаходять результат додаванням: 1 • 2 = 1 + 1 = 2; 1 • 3 = 1 + 1 + 1 = 3 і т. д. Потім, порівнявши в кожному випадку результат з множниками, вони приходять до висновку: при множенні одиниці на будь-яке число виходить те число, на яке множили. Надалі аналогічні приклади розв’язують на основі цього правила.

Потім вводять правило множення на 1: при множенні будь-якого числа на 1 виходить те число, яке множили, наприклад: 4 • 1 = 4, 12 • 1 = 12, а • 1 = а. Тут не можна використати прийом заміни добутку сумою, через де не можна спиратися і на переставляння множників, тому треба просто повідомити дітям це правило і надалі використовувати його під час обчислення.

Ділення на число, яке дорівнює діленому (3: 3 = 1), розкривають на основі конкретного змісту ділення: якщо, наприклад, 3 олівці розкласти в 3 коробки порівну, то в кожній коробці буде по одному олівцю. Міркуючи так, учні розв’язують кілька аналогічних прикладів: 4: 4 = 1, 6: 6 = 1 і т. д. При цьому помічають, що при діленні на число, яке дорівнює діленому, у частці дістаємо 1.

Ділення на 1 вводять на основі зв’язку між компонентами і результатом дії множення: знаючи, що 1 • 4 = 4, знайдемо, що 4: 1 = 4. Розв’язавши так ряд прикладів і порівнявши їх між собою, учні роблять висновок: при діленні будь-якого числа на одиницю в частці дістаємо те саме число. Цим висновком вони користуються надалі під час обчислень.

При множенні 10 на одноцифрові числа учні користуються прийомом: щоб помножити 10 на 2, можна 1 дес. помножити на 2, буде 2 дес., або 20. Множачи на 10, діти використовують переставну властивість множення: щоб 2 помножити на 10, можна 10 помножити на 2, буде 2 дес., або 20. При діленні використовують знання зв’язку між компонентами і результатом дії множення: щоб 20 поділити на 10, треба підібрати таке число, при множенні якого на 10 буде 20; це 2; отже, 20: 2 = 10. Так само знаходимо, що 20: 2 = 10.

Знання про дії множення і ділення, а також уміння, набуті учнями на першому етапі, є основою вивчення на другому етапі табличних випадків множення і відповідних випадків ділення.

Табличне множення і ділення вивчають одночасно, тобто з кожного випадку множення дістають відповідні випадки ділення: якщо 5 • 3 = 15, то 15: 5 = 3 і 15: 3 = 5. Основою для цього є знання учнями зв’язку між компонентами і результатом дії множення.

Спочатку розглядають усі табличні випадки множення і ділення з числом 2, потім 3, 4 і т. д.

Табличні випадки множення і ділення з кожним числом вивчають приблизно за одним планом.

Насамперед складають таблицю множення за сталим першим чи другим множником. Якщо скласти таблицю за сталим першим множником (2 • 2, 2 • 3, 2 • 4), то учні легко знаходитимуть результат наступного прикладу, користуючись результатом попереднього (2 • 4 = 2 • 3 + 2), але в цьому випадку в деяких сумах буде багато доданків (2 • 9 – дев’ять доданків). Якщо складати таблицю за сталим другим множником (2 • 2, 3 • 2, 4 • 2 і т. д.), доданків буде менше. Ця таблиця зручніша для запам’ятання, зате тут важче знаходити результат: доданки кожного наступного прикладу інші (2 • 2 = 2 + 2, 3 • 2 = = 3 + 3, 4 • 2 = 4 + 4,…); щоб знайти результат наступного прикладу, користуючись попередніми, доведеться міркувати так:

4 • 2 = 3 • 2 + 2, 5 • 2 = 4 • 2 + 2.

Вчитель може взяти будь-який з цих двох варіантів.

Ми візьмемо спочатку таблицю за сталим першим множником. Щоб знайти результат, використовують різні прийоми: добуток замінюють сумою

(2 • 3 = 2 + 2 + 2 = 6); до результату попереднього прикладу з таблиці додають відповідне число: 5 помножити на 3, буде 15, а під час множення 5 на 4 (на одну п’ятірку більше) можна результат обчислити так: 15 + 5 = 20; або від відомого результату віднімають відповідне число: учні знають, що 8 • 10 = 80, 8 • 9 (на одну вісімку менше), тому результат можна обчислити так: 80 – 8 = 72; використовують переставляння множників (2 • 5 = 5 • 2).

Якщо таблицю складено за сталим першим множником, то з кожного прикладу на множення учні складають ще один приклад на множення (переставляють множники) і два приклади на ділення (на основі зв’язку між компонентами і результатом множення), наприклад:

І IIIIIIV

2 • 2 = 4

2 • 3 = 6

2 • 4 = 8

2 • 5 = 10

К-во Просмотров: 258
Бесплатно скачать Курсовая работа: Формування в учнів обчислювальних навичок з табличного і позатабличного множення і ділення