Курсовая работа: Генерация полиномов

Если g(x) является делителем для f(x), то в качестве q(x) следует взять частное от деления f(x) на g(x).

Обратно, пусть многочлен q(x), удовлетворяющий равенству (2.1), существует. Из Т1 о единственности многочленов q(x) и r(x), удовлетворяющих равенству f(x) = g(x) ∙ q(x) + r(x) и условию, что степень r(x) меньше степени g(x), в нашем случае следует, что частное от деления f(x) на g(x) равно q(x), а остаток равен нулю.

Т3. [3, С. 106]

Если а – корень многочлена f(x), то f(x) делится на х – а.

Доказательство. [3, С. 106 -107]

Деление f(x) на х – а дает равенство f(x) = (x –a) ∙ q(x) +r(x). Подставим в это равенство х = а: 0 = r(x), откуда f(x) = (x –a) ∙ q(x).

Т4. Основная теорема алгебры. [1, С. 147]

Всякий многочлен с любыми числовыми коэффициентами, степень которого не меньше единицы имеет хотя бы один корень, в общем случае комплексный.

Доказательство.

См. [1, C.147 – 156]

Следствие 4.1 [1, С. 156]

Многочлен f(x) степени n над полем комплексных чисел имеет каноническое разложение с точностью до множителя нулевой степени вида f(x)=c ∙ (x – a1 ) ∙ (x – a2 ) ∙ … ∙ (x – an ). Причем это разложение единственное.

Доказательство.

См. [1, С. 156-157]

Следствие 4.2

Всякий многочлен f(x) степени n, n ≥ 1, с любыми числовыми коэффициентами имеет n корней, если каждый корень считать столько раз, какова его кратность.

Доказательство.

См. [1, С. 157]

Из всех приведенных теорем и следствий наибольшее значение для данной курсовой работы имеют следствия 4.1 и 4.2, так как в них говориться, что любой многочлен в общем случае может разлагаться на многочлены первой степени с точностью до множителя нулевой степени, т.е. с точностью до числового коэффициента, и их количество с учетом кратности равно степени разлагаемого многочлена и что многочлены, входящие в каноническое разложение, содержат в себе все корни разлагаемого полинома, соответственно с учетом их кратности.

Это не маловажно, так как теперь можно говорить о том, что, имея степень генерируемого полинома и его корни, мы можем с точностью до числового коэффициента определить и получить необходимый полином указанной степени.

1.2 Генерация полиномов

Генерация достаточно молодая и полностью не исследованная область

информатики и программирования. Дать точного и полного определения, что такое генерация пока еще не возможно. Под генерацией в общем случае понимается процесс динамического изменения некоторых программных параметров. Теоретически генерация может быть случайной, однако на практике случайную генерацию организовать практически не возможно. Так, например, генерация случайных чисел (в действительности псевдо случайных) зависит от многих параметров (время, дата и т.д.). Тема этой курсовой работы генерация полиномов. В программе, реализующей алгоритм генерации полинома, происходит заведомо неслучайная генерация коэффициентов полинома, так как она зависит от двух параметров: степени полинома и его корней


Глава 2. Практическая часть по генерации полиномов

2.1 Алгоритм генерации полиномов

Исследовав теоретическую часть по проблеме генерации полиномов, приступил к практическому применению полученных знаний. Прежде, чем приступать к написанию кода программы, генерирующей полиномы по введенной пользователем степени и корням, составил алгоритм для решения данной задачи.

Алгоритм.

1. Ввести степень генерируемого полинома.

2. Если степень не была введена или был введен символ, не являющийся цифрой, или было введено число меньше двух, то выдать сообщение об ошибке и перейти к пункту 1, иначе, при корректном вводе, перейти к пункту 3.

3. Организовать цикл (количество итераций равно степени генерируемого полинома) для ввода корней генерируемого полинома.

4. Ввести корни генерируемого полинома.

К-во Просмотров: 618
Бесплатно скачать Курсовая работа: Генерация полиномов