Курсовая работа: Геометрия Лобачевского

не существует подобных треугольников, которые не равны;

два треугольника равны, если их углы равны;

сумма углов треугольника не равна 1800 , а меньше (сумма углов треугольника зависит от его размеров: чем больше площадь, тем сильнее отличается сумма от 1800 ; и наоборот, чем меньше площадь, тем ближе сумма его углов к 1800 );

через точку вне прямой можно провести более одной прямой, параллельной данной.

Рекомендации: Я предлагаю использовать эту работу как дополнительную литературу в классах с углубленным изучением математики.


Глава 1. История возникновения неевклидовой геометрии

1.1 V постулат Евклида, попытки его доказательства

Евклид – автор первого дошедшего до нас строгого логического построения геометрии. В нем изложение на столько безупречно для своего времени, что в течение двух тысяч лет с момента появления его труда «Начала» оно было единственным руководством для изучающих геометрию.

«Начала» состоят из 13 книг, посвященных геометрии и арифметике в геометрическом изложении.

Каждая книга «Начал» начинается определением понятий, которые встречаются впервые. Вслед за определениями Евклид приводит постулаты и аксиомы, то есть утверждения, принимаемые без доказательства.

V постулат Евклида гласит: и чтобы всякий раз, когда прямая при пересечении с двумя другими прямыми образует с ними односторонние внутренние углы, сумма которых меньше двух прямых, эти прямые пересекались с той стороны, с которой эта сумма меньше двух прямых.

Важнейшим недостатком системы евклидовых аксиом, включая и его постулаты, является ее неполнота, то есть недостаточность их для строго логического построения геометрии, при котором каждое предложение, если оно не фигурирует в списке аксиом, должно быть логически выведено их последних. Поэтому Евклид при доказательстве теорем не всегда основывался на аксиомах, а прибегали в интуиции, к наглядности и «чувственным» восприятиям. Например, понятию «между» он приписывал чисто наглядный характер; он молчаливо предполагал, что прямая, проходящая через внутреннюю точку окружности, непременно должна пересечь ее в двух торчках. При этом он основывался только на наглядности, а не на логике; доказательства этого факта он нигде не дал, и дать не мог, так как у него отсутствовали аксиомы непрерывности. Нет у него и некоторых других аксиом, без которых строго логическое доказательство теорем не возможно.

Но никто не сомневался в истинности постулатов Евклида, что касается и V постулата. Между тем уже в древности именно постулат о параллельных привлек к себе особое внимание ряда геометров, считавших неестественным помещение его среди постулатов. Вероятно, это было связано с относительно меньшей очевидностью и наглядностью V постулата: в неявном виде он предполагает достижимость любых, как угодно далеких частей плоскости, выражая свойство, которое обнаруживается только при бесконечном продолжении прямых.

Сам Евклид и многие ученые пытались доказать постулат о параллельных. Одни старались доказать постулат о параллельных, применяя только другие постулаты и те теоремы, которые можно вывести из последних, не используя сам V постулат. Все такие попытки оказались неудачными. Их общий недостаток в том, что в доказательстве неявно применялось какое-нибудь предположение, равносильное доказываемому постулату. Другие предлагали по-новому определить параллельные прямые или же заменить V постулат каким-либо, по их мнению, более очевидным предложением.

Но многовековые попытки доказательства пятого постулата Евклида привели в конце концов к появлению новой геометрии, отличающейся тем, что в ней V постулат не выполняется. Эта геометрия теперь называется неевклидовой, а в России носит имя Лобачевского, который впервые опубликовал работу с ее изложением.

И одной из предпосылок геометрических открытий Н.И Лобачевского (1792-1856) был как раз его материалистический подход к проблемам познания. Лобачевский он был твердо уверен в объективном и не зависящим от человеческого сознания существовании материального мира и возможности его познания. В речи «О важнейших предметах воспитания» (Казань, 1828) Лобачевский сочувственно приводит слова Ф.Бэкона: «оставьте трудиться напрасно, стараясь извлечь их одного разума всю мудрость; спрашивайте природу, она хранит все истины и на все вопросы ваши будет отвечать вам непременно и удовлетворительно». В своем сочинении «О началах геометрии», являющимся первой публикацией открытой им геометрии, Лобачевский писал: «первые понятия, с которых начинается какая-нибудь наука, должны быть ясны и приведены к самому меньшему числу. Тогда только они могут служить прочным и достаточным основанием учения. Такие понятия приобретаются чувствами; врожденным – не должно верить».

Первые попытки Лобачевского доказать пятый постулат относятся к 1823 году. К 1826 году он пришел к убеждению в том, что V постулат не зависит от остальных аксиом геометрии Евклида и 11(23) февраля 1826 года сделал на заседании факультета казанского университета доклад «Сжатое изложение начал геометрии со строгим доказательством теоремы о параллельных», в котором были изложены начала открытой им «воображаемой геометрии», как он называл систему, позднее получившую название неевклидовой геометрии. Доклад 1826 г. вошел в состав первой публикации Лобачевского по неевклидовой геометрии – статьи «О началах геометрии», напечатанной в журнале Казанского университета «Казанский вестник» в 1829-1830гг. дальнейшему развитию и приложениям открытой им геометрии были посвящены мемуары «Воображаемая геометрия», «применение воображаемой геометрии к некоторым интегралам» и «Новые начала геометрии с полной теорией параллельных», опубликованные в «Ученых записках» соответственно в 1835, 1836 и 1835-1838 гг. Переработанный текст «Воображаемой геометрии» появился во французском переводе в Берлине, там же в 1840г. вышли отдельной книгой на немецком языке «Геометрические исследования по теории параллельных линий» Лобачевского. Наконец, в 1855 и 1856 гг. он издал в Казани на русском и французском языках «Пангеометрию». Высоко оценил «Геометрические исследования» Гаусс, который провел Лобачевского (1842) в члены-корреспонденты Геттингенского ученого общества, бывшего по существу Академией наук ганноверского королевства. Однако в печати с оценкой новой геометрической системы Гаусс не выступил.

1.2 Постулаты параллельности Евклида и Лобачевского

Основным пунктом, откуда начинается разделение геометрии на обычную евклидову (употребительную) и неевклидову (воображаемую геометрию или «пангеометрию») является, как известно, постулат о параллельных линиях.

В основе обычной геометрии лежит предположение, что через точку, не лежащую на данной прямой, можно провести в плоскости, определяемой этой точкой и прямой, не более одной прямой, не пересекающей данную прямую. Тот факт, что через точку, не лежащую на данной прямой, проходит по крайней мере одна прямая, не пересекающая эту прямую, относится к «абсолютной геометрии», т.е. может быть доказан без помощи постулата о параллельных линиях.

Прямая ВВ, проходящая через Р под прямым углом к перпендикуляру РQ, опущенному на АА1 , не пересекает прямой АА1 ; эта прямая в евклидовой геометрии называется параллельной к АА1 .

В противоположность постулату Евклида, Лобачевский принимает в основу построения теории параллельных линий следующую аксиому:

Через точку, не лежащую на данной прямой, можно провести в плоскости, определяемой этой точкой и прямой, более одной прямой, не пересекающей данную прямую.

Отсюда непосредственно вытекает существование бесконечно множества прямых, проходящих через одну и ту же точку и не пересекающих данную прямую. Пусть прямая СС1 не пересекает АА1 ; тогда все прямые, проходящие внутри двух вертикальных углов ВРС и В1 РС1 , также не пересекаются с прямой АА1 .


Глава 2. Геометрия Лобачевского.

2.1 Основные понятия

В мемуарах «О началах геометрии» (1829) Лобачевский прежде всего воспроизвел свой доклад 1826г.

Он определяет основные понятия геометрии, не зависящие от V постулата, и заметив, что сумма углов прямолинейного треугольника не может быть >, как это имеет место у сферических треугольников, Лобачевский заявляет: «Мы видели, что сумма углов прямолинейного треугольника не может быть >. Остается предполагать эту сумму = или <. То и другое может быть принято без всякого противоречия впоследствии, от чего и происходит две Геометрии: одна, употребительная доныне по своей простоте, соглашается со всеми измерениями на самом деле; другая, воображаемая, более общая и потому затруднительная в своих вычислениях, допускает возможность зависимости линий от углов».


Лобачевский указывает, что в «воображаемой геометрии» сумма углов треугольника всегда < и две прямые могут не пересекаться в случае, когда они образуют с секущей углы, в сумме меньше. Параллельные прямые определяются как такие, которые не пересекаются, но могут быть получены предельным переходом из пересекающихся. Через каждую точку плоскости

К-во Просмотров: 748
Бесплатно скачать Курсовая работа: Геометрия Лобачевского