Курсовая работа: Геометрия Лобачевского

П(а)=2arctg e-a/q , (1)

где q – некоторая постоянная. При а=0 угол параллельности всегда острый, причем он стремится при а=0, постоянная же qможет служить на плоскости Лобачевского абсолютной единицей длины, аналогичной абсолютной единицей длины, аналогичной единице угла в евклидовом пространстве. Лобачевский устанавливает также, что расходящиеся прямые обладают общим перпендикуляром и удаляются друг от друга по обе стороны от него, а две параллельные прямые приближаются друг к другу и расстояния точек одной из них от другой стремится к 0 при неограниченном удалении этих точек. Сумма углов треугольника в геометрии Лобачевского всегда меньше, и если - «угловой дефект» треугольника, то есть разность между и суммой его углов, то площадь треугольника S равна

S=q2 , (2)


где q – та же постоянная, что и в формуле (1).

Круг при стремлении его радиуса к бесконечности переходит в системе Лобачевского не в прямую, а в особого рода кривую «предельного круга» - в настоящее время такие кривые называют орициклами. Сфера при тех же обстоятельствах переходит не в плоскость, а в кривую поверхность, которую Лобачевский назвал «предельной сферой», а в настоящее время именуют орисферой. Лобачевский отмечает, что на орисфере имеет место евклидова геометрия, причем роль прямых на ней играют орициклы. Это позволяет Лобачевскому, опираясь на евклидову тригонометрию на орисфере, вывести тригонометрию на плоскости в его геометрической системе. Название «воображаемая геометрия» подчеркивает, что эта геометрия относится к евклидовой, «употребительной», по терминологии Лобачевского, как мнимые числа, «воображаемые», по его терминологии, к действительным.

Лобачевский сразу же поставил вопрос об экспериментальной проверке того, какая геометрия имеет место в реальном мире – «употребительная» или «воображаемая», для чего он решил измерить сумму углов треугольника, образованного двумя диаметрально противоположными положениями Земли на ее орбите и Сириусом и считая один из углов этого треугольника прямым, а другой – равным углу параллельности, Лобачевский нашел, что эта сумма отличается от на разность, меньшую ошибки угломерных инструментов в его время. «После того, - пишет Лобачевский, - можно вообразить, сколько эта разность, на которой основана наша теория параллельных, оправдывает точность всех вычислений обыкновенной геометрии и дозволяет принятые начала рассматривать как бы строго доказанными».

Это объясняет, что под «строгим доказательством теоремы параллельных» в докладе 1826г. Лобачевский понимал невозможность установить экспериментальным путем, какая из двух геометрий имеет место в реальном мире, откуда вытекает, что на практике можно пользоваться «употребительной геометрией», не рискуя впасть в ошибку.

Наиболее полно изложена система Лобачевского в его «Новых началах с полной теорией параллельных» (1835-1838). Изложение геометрии у Лобачевского основывается на чисто топологических свойствах прикосновения и сечения, конгруэнтность тел и равенство отрезков определяются по существу с помощью движения.

В позднейших работах Лобачевский ввел координаты и вычислил из геометрических соображений целый ряд новых определенных интегралов, которым он специально посвятил работу «Применение воображаемой геометрии к некоторым интегралам», многие из которых были включены в дальнейшие справочники.

2.2 Непротиворечивость геометрии Лобачевского

Выведя уже в своей первой работе «О началах геометрии» формулы тригонометрии своей новой системы, Лобачевский заметил, что «эти уравнения переменяются в … (уравнения) сферической Тригонометрии, как скоро вместо боков а, b, c ставим в а -1, b-1, с -1, но в обыкновенной Геометрии и сферической Тригонометрии везде входят одни содержания ( то есть отношения ) линий: следовательно, обыкновенная Геометрия, Тригонометрия и эта новая геометрия всегда будут согласованы между собой». Это означает, что если мы запишем теорему косинусов, теорему синусов и двойственную теорему косинусов сферической тригонометрии для сферы радиуса r в виде

sinA sinB sinC,

sin(a/r) sin(b/r) sin(c/r)

cos(a/r)=cos(b/r)*cos(c/r)+sin(b/r)*sin(c/r)*cosA,

cosA=-cosBcosC+sinBsinCcos(a/r),


то формулы тригонометрии Лобачевского можно записать в том же виде, заменив стороны а,b,c треугольника произведениями ai, bi, ci; так как умножение сторон а,b,c на i равносильно умножению на i радиуса сферы, то, полагая r=qi и воспользовавшись известными соотношениями

cos(ix) = ch x, sin(ix) = i sh x,

мы можем переписать соответственные формулы тригонометрии Лобачевского в виде

ch(a/q)=ch(b/q)*ch(c/q)-sh(b/q)*sh(c/q)*cosA,

sinA sinB sinC,

sh(a/q) sh(b/q) sh(c/q)

cosA = -cosBcosC + sinBsinCcos(a/q).

Сам Лобачевский пользовался не функциями chx и shx, а комбинациями введенной им функции П(х) с тригонометрическими функциями; постоянная q в этих формулах – та же, что и в формулах (1) и (2).

Фактически Лобачевский доказал непротиворечивость своей системы тем, что ввел как на плоскости, так и в пространстве координаты и таким образом построил арифметическую модель плоскости и пространства Лобачевского. Однако сам Лобачевский видел свидетельство непротиворечивость открытой им геометрии в указанной связи формул его тригонометрии с формулами сферической тригонометрии. Этот вывод Лобачевского неправомерен. В своих мемуарах он доказал, что формулы сферической тригонометрии вытекают из его геометрии, между тем, чтобы утверждать, что из непротиворечивости тригонометрических формул вытекает непротиворечивость геометрии Лобачевского, надо было доказать, что все предложения последней можно вывести из ее тригонометрических формул и «абсолютной геометрии» - предложений, не зависящих от пятого постулата. Лобачевский попытался провести такое доказательство, но в его рассуждения вкралась ошибка.

2.3 Модели геометрии Лобачевского

Первой, по времени явилась модель планиметрии Лобачевского на некоторых поверхностях (именно на поверхностях постоянной отрицательной кривизны). На этих поверхностях в смысле их внутренней геометрии, когда расстоянии между точками определяются по кратчайшим линиям на самой поверхности, выполняется геометрия Лобачевского. Только не на всей плоскости, а на той ее части, которая может быть представлена данной поверхностью. Вместе с тем доказано, что не существует (в трехмерном евклидовом пространстве) никакой поверхности, которая своей внутренней геометрией представляла бы плоскость Лобачевского.

Реализацию геометрии Лобачевского на поверхностях установил итальянский математик Бельтрами в 1868 г.

Соответствующие поверхности могут быть изготовлены, и тогда геометрия на кусках плоскости Лобачевского представляется самым реальным способом.

Следующая по времени появления геометрическая модель дается на обычной евклидовой плоскости. В ней вся плоскость Лобачевского представляется внутренностью круга, прямые представлены хордами (с исключенными концами).

К-во Просмотров: 751
Бесплатно скачать Курсовая работа: Геометрия Лобачевского