Курсовая работа: Имитационное моделирование экономической деятельности предприятия

где т - математическое ожидание M[t];


- ?????????????????? ??????????.

Рис.2, Рис.3 Функция плотности вероятности и характеристики нормального распределения

Любые сложные работы на объектах экономики состоят из многих коротких последовательных элементарных составляющих работ. Поэтому при оценках трудозатрат всегда справедливо предположение о том, что их продолжительность – это случайная величина, распределенная по нормальному закону.

В имитационных моделях экономических процессов закон нормального распределения используется для моделирования сложных многоэтапных работ.

1.3.4. Экспоненциальное распределение

Оно также занимает очень важное место при проведении системного анализа экономической деятельности. Этому закону распределения подчиняются многие явления, например:

1 время поступления заказа на предприятие;

2 посещение покупателями магазина-супермаркета;

3 телефонные разговоры;

4 срок службы деталей и узлов в компьютере, установленном, например, в бухгалтерии.

Функция экспоненциального распределения выглядит следующим образом:

F(x)= при 0<x<∞, где

- параметр экспоненциального распределения, >0.

Экспоненциальное распределение являются частными случаями гамма - распределения.


?? ???.4 ????????? ?????????????? ?????-?????????????, ? ????? ?????? ??? ??????? ????????? ??? ????????? ???????? ???? ?????????????.

Рис. 5 Функция плотности вероятности гамма-распределения

В имитационных моделях экономических процессов экспоненциальное распределение используется для моделирования интервалов поступления заказов, поступающих в фирму от многочисленных клиентов. В теории надежности применяется для моделирования интервала времени между двумя последовательными неисправностями. В связи и компьютерных науках – для моделирования информационных потоков.

1.3.5. Обобщенное распределение Эрланга

Это распределение, имеющее несимметричный вид. Занимает промежуточное положение между экспоненциальным и нормальным. Плотность вероятностей распределения Эрланга представляется формулой:

P(t)= при t≥0; где

K-элементарные последовательные составляющие, распределенные по экспоненциальному закону.

Обобщенное распределение Эрланга применяется при создании как математических, так и имитационных моделей.

Это распределение удобно применять вместо нормального распределения, если модель свести к чисто математической задаче. Кроме того, в реальной жизни существует объективная вероятность возникновения групп заявок в качестве реакции на какие-то действия, поэтому возникают групповые потоки. Применение чисто математических методов для исследования в моделях эффектов от таких групповых потоков либо невозможно из-за отсутствия способа получения аналитического выражения, либо затруднено, так как аналитические выражения содержат большую систематическую погрешность из-за многочисленных допущений, благодаря которым исследователь смог получить эти выражения. Для описания одной из разновидностей группового потока можно применить обобщенное распределение Эрланга. Появление групповых потоков в сложных экономических системах приводит к резкому увеличению средних длительностей различных задержек (заказов в очередях, задержек платежей и др.), а также к увеличению вероятностей рисковых событий или страховых случаев.

1.3.6. Треугольное распределение

Треугольное распределение является более информативным, чем равномерное. Для этого распределения определяются три величины — минимум, максимум и мода. График функции плотности состоит из двух отрезков прямых, одна из которых возрастает при изменении X от минимального значения до моды, а другая убывает при изменении X от значения моды до максимума. Значение математического ожидания треугольного распределения равно одной трети суммы минимума, моды и максимума. Треугольное распределение используется тогда, когда известно наиболее вероятное значение на некотором интервале и предполагается кусочно-линейный характер функции плотности.


?? ???.5 ????????? ?????????????? ???????????? ????????????? ? ?????? ??? ??????? ????????? ???????????.

Рис.5 Функция плотности вероятности и характеристики треугольного распределения.

Треугольное распределение легко применять и интерпретировать, однако для его выбора необходимы веские основания.

В имитационных моделях экономических процессов такое распределение иногда используется для моделирования времени доступа к базам данных.


1.4. Планирование имитационного компьютерного эксперимента

Имитационная модель независимо от выбранной системы моделирования (например, Pilgrim или GPSS) позволяет получить два первых момента и информацию о законе распределения любой величины, интересующей экспериментатора (экспериментатор – это субъект, которому нужны качественные и количественные выводы о характеристиках исследуемого процесса).

1.4.1. Кибернетический подход к организации экспериментальных исследований сложных объектов и процессов.

Планирование эксперимента можно рассматривать как кибернетический подход к организации и проведению экспериментальных исследований сложных объектов и процессов. Основная идея метода состоит в возможности оптимального управления экспериментом в условиях неопределенности, что родственно тем предпосылкам, на которых базируется кибернетика. Целью большинства исследовательских работ является определение оптимальных параметров сложной системы или оптимальных условий протекания процесса:

1. определение параметров инвестиционного проекта в условиях неопределенности и риска;

2. выбор конструкционных и электрических параметров физической установки, обеспечивающих наиболее выгодный режим ее работы;

3. получение максимально возможного выхода реакции путем варьирования температуры, давления и соотношения реагентов – в задачах химии;

4. выбор легирующих компонентов для получения сплава с максимальным значением какой-либо характеристики (вязкость, сопротивление на разрыв и пр.) – в металлургии.

При решении задач такого рода приходится учитывать влияние большого количества факторов, часть из которых не поддается регулированию и контролю, что чрезвычайно затрудняет полное теоретическое исследование задачи. Поэтому идут по пути установления основных закономерностей с помощью проведения серии экспериментов.

Исследователь получил возможность путем несложных вычислений выражать результаты эксперимента в удобной для их анализа и использования форме.

1.4.2. Регрессионный анализ и управление модельным экспериментом


? ????? ?????? ?????? ???????????? ????? ??????????? ??? ????????? ??????? ????? (???.6), ?? ????? ???????? ????????? ??????????? ????????? xi , (i = 1, 2,...,k ) ? ???????????????? ?????????? zj , (j = 1, 2, ...,m ). ??????? ??????? ???????????? ???????? ?????????? ???????? ??? ?????-???? ?????? ?????????????? ??????? h v (v = 1, 2,...,n ).

Рис.6 Схема исследования системы или процесса


???? ??????????? ??????????? ????? ?? ????????????? ??????? ηv (xi ) , ??? ??????? ?????? ????? ?????????? xi (???.7), ?? ??? ????????????? ????????? xi ????? ???????? ????????? ???????? ηv (xi ) .

Рис.7 Пример усреднения результатов эксперимента

К-во Просмотров: 377
Бесплатно скачать Курсовая работа: Имитационное моделирование экономической деятельности предприятия