Курсовая работа: Имитационное моделирование работы вычислительной системы из трех ЭВМ в среде GPSS

Для получения максимального объема необходимой информации об объекте моделирования при минимальных затратах машинных ресурсов проведем полный факторный эксперимент с четырьмя существенными факторами (переменных и параметров).

Согласно выбранным критериям оценки эффективности системы и целевой функции модели выберем следующие существенные факторы:

х1 – интервал времени (интенсивность) поступления заданий в вычислительную систему, состоящую их трех ЭВМ, Dtпр = 3мин;

х2 – интервал времени обработки заданий на первой ЭВМ, tЭ1 = 7;

х3 – интервал времени обработки заданий на второй ЭВМ tЭ2 = 3;

х4 – интервал времени обработки заданий на третьей ЭВМ tЭ3 = 5.

Зададим уровни вариации для каждого фактора:

1 = 1, Dх2 = 4, Dх3 = 1, Dх2 = 2.

Составим матрицу плана полного факторного эксперимента

Номер опыта Фактор х1 Фактор х2 Фактор х3 Фактор х4
0 (базовый) 3 7 3 5
1 2 3 2 3
2 2 3 2 7
3 2 3 4 3
4 2 3 4 7
5 2 11 2 3
6 2 11 2 7
7 2 11 4 3
8 2 11 4 7
9 4 3 2 3
10 4 3 2 7
11 4 3 4 3
12 4 3 4 7
13 4 11 2 3
14 4 11 2 7
15 4 11 4 3
16 4 11 4 7

3.2 Определение требований к вычислительным средствам

Для проведения эксперимента потребуется только один персональный компьютер без внешних устройств. Время выполнения эксперимента ограничено лишь временем доступа к персональному компьютеру.

3.3 Проведение рабочих расчетов

Набор исходных данных для ввода в ЭВМ представлен в виде матрицы плана, с помощью которой в достаточном объеме исследуется факторное пространство. Получение выходных данных зависит от интерпретатора языка GPSS. Дополнительные расчеты не требуются.

3.4 Анализ результатов моделирования системы

Планирование полного факторного эксперимента с моделью позволяет вывести необходимое количество выходных данных, при этом каждый опыт соответствует одному из возможных состояний исследуемой системы. Статистические характеристики модели вычисляются в интерпретаторе языка GPSS автоматически. Проведение регрессионного, корреляционного и дисперсионного анализа не требуется.

3.5 Представление результатов моделирования

Результаты моделирования представлены в табл. 1, 2.

Коэффициент использования – это доля времени моделирования, в течение которого устройство было занято. Среднее время занятия устройства из расчета именно одним транзактом в течение времени моделирования, единица измерения - в минутах.

Таблица 1. Результаты работы устройств EVM1, EVM2, EVM3

Номер опыта Устройство Кол-во раз, когда устройство было занято Коэффициент использования Среднее время занятия устройства Конечное время работы устройств
1 2 3 4 5 6
0 EVM1 77 0,831 7 649,000
EVM2 73 0,337 3
EVM3 127 0,978 5
1 EVM1 80 0,583 3 412,000
EVM2 84 0,408 2
EVM3 116 0,845 3
2 EVM1 81 0,303 3 803,000
EVM2 86 0,214 2
EVM3 114 0,994 7
3 EVM1 86 0,623 3 414,000
EVM2 81 0,783 4
EVM3 119 0,862 3
4 EVM1 83 0,316 3 789,000
EVM2 88 0,446 4
EVM3 112 0,994 7
5 EVM1 96 0.996 11 1060,000
EVM2 83 0.331 2
EVM3 117 0.157 3
6 EVM1 89 0.991 11 988,000
EVM2 91 0.772 2
EVM3 109 0.184 7
7 EVM1 87 0.994 11 963,000
EVM2 87 0.352 4
Продолжение таблицы 1
1 2 3 4 5 6
EVM3 113 0.361 3 963,000
8 EVM1 84 0.994 11 930,000
EVM2 87 0.374 4
EVM3 113 0.851 7
9 EVM1 81 0.302 3 805,000
EVM2 92 0.229 2
EVM3 108 0.402 3
10 EVM1 66 0.239 3 830,000
EVM2 90 0.217 2
EVM3 110 0.928 7
11 EVM1 75 0.280 3 804,000
EVM2 92 0.458 4
EVM3 108 0.403 3
12 EVM1 77 0.945 3 822,000
EVM2 89 0.433 4
EVM3 111 0.281 7
13 EVM1 91 0.993 11 1008,000
EVM2 87 0.336 2
EVM3 113 0.173 3
14 EVM1 78 0.975 11 880,000
EVM2 93 0.211 2
EVM3 107 0.851 7
15 EVM1 80 0.992 11 887,000
EVM2 85 0.383 4
EVM3 115 0.389 3
16 EVM1 82 0.988 11 913,000
EVM2 83 0.364 4
EVM3 117 0.897 7

Таблица 2. Результаты работы очередей EVMQ1, EVMQ2, EVMQ2

Номер опыта Устройство Максимальное содержимое очереди Общее кол-во входов транзактов в очередь в течение времени моделирования Общее кол-во входов транзактов в очередь с нулевым временем ожидания Среднее значение содержимого очереди в течение времени моделирования Среднее время пребывания одного транзакта в очереди с учетом всех входов в очередь Среднее время пребывания одного транзакта в очереди без учета «нулевых» входов в очередь
1 2 3 4 5 6 7 8
0 EVMQ1 4 77 12 1,020 8,597 10,185
EVMQ2 2 73 65 0,020 0,178 1,625
EVMQ3 9 127 4 3,488 17,827 18,407
1 EVMQ1 2 80 43 0,160 0,825 1,784
EVMQ2 2 84 65 0,070 0,345 1,526
EVMQ3 6 116 30 1,063 3,776 5,093
2 EVMQ1 2 81 50 0,062 0,617 1,613
EVMQ2 2 86 57 0,055 0,512 1,517
EVMQ3 57 114 1 27,928 196,719 198,460
3 EVMQ1 2 86 48 1,162 0,779 1,763
EVMQ2 6 81 15 1,179 6,025 7,394
EVMQ3 8 119 28 1,645 5,723 7,484
4 EVMQ1 2 83 40 0,106 1,012 1,953
EVMQ2 6 88 16 0,790 7,080 8,653
EVMQ3 55 112 1 28,999 204,286 206,126
5 EVMQ1 60 96 1 28,930 319,438 322,800
EVMQ2 1 83 81 0,002 0,024 1,000
EVMQ3 2 117 81 0,070 0,632 2,056
6 EVMQ1 52 89 1 25.302 280.876 284.068
EVMQ2 1 91 87 8.890 80.578 92.453
EVMQ3 25 109 14 0.005 0.055 1.250
7 EVMQ1 51 87 1 24.082 266.563 269.663
EVMQ2 3 87 48 0.073 0.619 2.059
EVMQ3 2 113 79 0.134 1.483 3.308
8 EVMQ1 48 84 1 23.465 259.786 262.916
EVMQ2 4 87 56 0.154 1.644 4.613
EVMQ3 30 113 11 10.389 85.504 94.725
9 EVMQ1 1 81 81 0.000 0.000 0,000
Продолжение таблицы 2
1 2 3 4 5 6 7 8
EVMQ2 1 92 85 0.009 0.296 0,076
EVMQ3 1 108 91 0.040 0.076 0,296
10 EVMQ1 1 66 66 0,000 0,000 0,000
EVMQ2 1 90 87 0,004 0,033 1,000
EVMQ3 7 110 12 3,117 23,518 26,398
11 EVMQ1 1 75 75 0,000 0,000 0,000
EVMQ2 1 92 71 0,078 0,685 3,000
EVMQ3 1 108 86 0,047 0,352 1,727
12 EVMQ1 1 77 77 0,000 0,000 0,000
EVMQ2 1 89 80 0,033 0,303 3,000
EVMQ3 5 111 10 1,491 11,045 12,139
13 EVMQ1 19 91 1 8,268 95,571 96,633
EVMQ2 1 87 80 0,008 0,092 1,143
EVMQ3 1 113 94 0,032 0,283 1,684
14 EVMQ1 7 78 4 2,802 31,615 33,324
EVMQ2 1 93 88 0,007 0,065 1,200
EVMQ3 5 107 27 0,956 7,860 10,512
15 EVMQ1 12 80 2 5,781 64,100 65,774
EVMQ2 2 85 69 0,054 0,565 3,000
EVMQ3 1 115 87 0,057 0,443 1,821
16 EVMQ1 10 82 1 4,525 50,378 51,000
EVMQ2 2 83 65 0,041 0,446 2,056
EVMQ3 5 117 15 1,388 10,829 12,422

3.6 Интерпретация результатов моделирования

Полученные результаты можно интерпретировать следующим образом.

Согласно целевой функции оптимальными вариантами модели являются опыты № 3, 9, 11, т.к. ЭВМ1, ЭВМ2 и ЭВМ3 загружены равномерно, максимальная длина очередей перед каждой ЭВМ в течение моделирования минимальна.

Это объясняется тем, что в 9 и 11 опытах задания поступают реже – каждые 4 минуты, в то время как время обработки заданий на каждой из ЭВМ минимально, именно поэтому в этих случаях коэффициент использования более равномерно распределен, по сравнению с другими опытами (9: 0,302; 0,229; 0,422. 11: 0,28; 0,458; 0,403 соответственно).

При этом данные опыты являются лучшими для минимизации длины очередей перед каждой ЭВМ в отдельности (9: 1,1,1. 11: 1,1,1 соответственно). Опыт №3 тоже по-своему отвечает целевой функции – длина очередей перед каждой ЭВМ минимальна, по сравнению с другими опытами (2,6,8 соответственно), но лучшим опыт является не только из-за более или менее равномерного распределения загрузки между ЭВМ, но и из-за максимизации коэффициента использования, которые всех ближе к единице и при этом еще и почти равны между ЭВМ (0,623; 0, 723; 0,862 соответственно).

Наихудшими вариантами модели являются опыты № 5, 6, 8, т.к. загруженность ЭВМ неравномерна, максимальная длина очередей перед каждой ЭВМ в течение моделирования огромна. Это объясняется тем, что в 5, 6 и 8 опытах задания поступа

К-во Просмотров: 321
Бесплатно скачать Курсовая работа: Имитационное моделирование работы вычислительной системы из трех ЭВМ в среде GPSS