Курсовая работа: Использование фотоупругого эффекта для измерения физических величин
Рисунок 2.9-Электрооптический модулятор, состоящий из двух поляризационных фильтров и кристалла
Коэффициент преломления в некоторых кристаллах зависит от приложенного электрического поля. Это объясняется природой распространения лучей света внутри кристалла. Обычно допустимые направления поляризации света определяются симметрией кристалла. Приложенное к кристаллу внешнее электрическое поле может изменить эту симметрию, и, следовательно, привести к модуляции интенсивности света. Одним из часто используемых материалов в электрооптических устройствах является ниобат лития (LiNbO3 ). На рисунке 2.9 показан электрооптический модулятор, состоящий из кристалла, расположенного между двумя поляризационными фильтрами, ориентированными под углом 90° друг к другу Входной поляризатор ориентирован под углом 45° к оси кристалла .
Рисунок 2.10-Акустикооптический модулятор, создающий множество лучей
На поверхность кристалла прикреплены два электрода, при изменении напряжения на которых происходит изменение поляризации падающего света на втором поляризаторе, что, в свою очередь, ведет к модуляции интенсивности выходного излучения Подобный эффект можно наблюдать, когда кристалл подвергается воздействию механических сил, особенно, акустических волн. Однако акустико-оптические устройства используются в оптоволоконной технике, в основном, в качестве оптических фазовращателей и сравнительно редко как модуляторы интенсивности излучений. Акустические волны, проходя через кристалл, вследствие эффекта фотоупругости вызывают в нем механические напряжения, линейно изменяющие его коэффициент преломления. Это, в свою очередь, при определенных условиях приводит к отклонению выходящих оптических лучей, также проходящих через этот кристалл (Рисунок 2.10) Таким образом, акустические волны создают для лучей света как бы дифракционную решетку. Акустикооптические устройства часто изготавливаются из ниобата лития и кварца, которые способны работать с акустическими волнами в широком частотном диапазоне: от десятков МГц до нескольких ГГц. Скорость звука через ниобат лития составляет порядка 6х103 м/с, поэтому 1-ГГц акустическая волна, имеющая длину волны 6 мкм, сравнима с излучением в И К спектральном диапазоне.
2.3Измерение ускорения
На рисунке 2.11 приведена структурная схема датчика ускорения, работающего по тому же принципу, что и датчик давления. Здесь также груз прикреплен непосредственно к фотоупругому элементу. При колебаниях на фотоупругий элемент действует сила, пропорциональная произведению массы груза на ускорение,
Рисунок 2.11-Датчик ускорения на основе эффекта Фотоупругости
Если к фотоупругому элементу из эпоксидной смолы прикрепить груз 25 г, го можно мерить ускорения 0,1...30g с точностью ±1 % для колебаний с частотой 0 ..3 кГц. Если же массу груза увеличить до 280 г, то минимальное измеряемое ускорение будет 0,0lg (при отношении сиг нал— шум 40 дБ), а частотная полоса в = 500 Гц.
Заключение
В данной курсовой работе описана общая характеристика фотоупругого эффекта, а также методы измерения параметров светового излучения, давления и ускорения с помощью фотоупругого эффекта.
Список использованных источников
1. Волоконно-оптические датчики. Вводный курс для инженеров и научных работников. Под ред. Э. Удда. Москва:Техносфера, 2008.-520с.
2. Р.Г. Джексон. Новейшие датчики.- М: Техносфера, 2007.-384с.
3. Дж.Фрайден. Современные датчики. Справочник.- Москва: Техносфера, 2005. - 592c.