Курсовая работа: Использование обобщений при обучении математике в средней школе
Все же храня соразмерность такую: представь чужестранец,
Белых быков в точности было ровно…
То, что древние математики были прекрасными поэтами, можно видеть из приведенных примеров. Эти произведения помогут показать ученикам красоту не только самой математики, но и поэзии, прозы и других древних сочинений. При этом исторические сведения помогут сосредоточить и сконцентрировать внимание учащихся на изучении программного материала, помогут надолго сохранить в памяти те факты, которые были красиво описаны с помощью литературы.
В стихах, приведенных выше, также встречаются географические названия: Александрия, Тринакрийская Сицилия и другие. При сообщении учащимся исторических сведений, если учитель приведет карты древние и современные, то ученики наиболее полно представят себе картину времени, когда произошло математическое открытие. При рассмотрении карт ученики могут найти древние города, например, город Александрию, и затем ответить на вопросы: каким морем омывается город? (Средиземным); с какой рекой связаны истории этого города?; к какой стране принадлежит Александрия? (Египет); назвать главную реку Египта и ее природные особенности? (Нил); перечислить известных людей, проживавших в Александрии? (Евклид, Эратосфен, Апполоний, Герон, Гиппарх, Птолемей, Диофант). Такая работа позволяет развивать воображение, мышление учащихся и тем более поможет лучше разобраться в географических местах и надолго отложиться в памяти детей, так как эти знания были добыты путем сопоставления карт. Приведенный в примерах Диофант занимался изучением методов решения уравнений. Уравнения, решаемые в целых числах так и назвали Диофантовыми уравнениями. А также с его именем связаны понятия Ал-джебра и Ал-мукабала.
Ал-джебра
При решении уравненья,
Если в части одной,
Безразлично какой,
Встретится член отрицательный,
Мы к обеим частям,
С этим членом сличив,
Равный член придадим,
Только с знаком другим,
И найдем результат нам желательный.
Ал-мукалаба
Дальше смотрим в уравненье,
Можно ль сделать приведенье,
Если члены в нем подобны,
Сопоставить их удобно,
Вычтя равный член из них,
К одному приводим их.
После изучения подобных стихов можно выводить современные методы решения линейных уравнений: перенос слагаемых их одной части уравнения в другую, деление и умножение обеих частей уравнения на одно и то же число.
Исследования Н.Я. Виленкина в области истории науки математики, показывают, что математикой занимались не только профессионалы. Эта наука притягивала внимание многих людей. Так, например, в "Маленьком принце", замечательной сказке французского писателя А. Де Сент-Экзюпери, Лис спрашивает Маленького принца:
А на той планете есть охотники?
Нет.
Как интересно! А куры есть?
Нет.
Нет в мире совершенства! - вздыхает Лис.
Н.Я. Виленкин предлагает поспорить о не существовании совершенства в мире и именно с этого литературного текста начать беседу о совершенных числах - числах, делители которых в сумме дают само число.