Курсовая работа: Измерительные технологии, их использование и развитие

К системному оборудованию относится измерительное оборудование, обеспечивающее настройку сети в целом и ее отдельных узлов, а также последующий мониторинг состояния всей сети. Системным оно названо потому, что современное оборудование этого класса имеет широкие возможности интеграции в измерительные комплексы, сети измерительных приборов и входить в качестве подсистем в автоматизированные системы управления связью (Telecommunications Management Networks - TMN).

Эксплуатационное измерительное оборудование должно обеспечивать качественную эксплуатацию отдельных узлов сети, сопровождение монтажных работ и оперативный поиск неисправностей.

Разделив весь спектр оборудования на два основных класса, легко понять требования к каждому из них. Эти требования существенно различны для перечисленных классов и представлены ниже в порядке уменьшения приоритетности.

Требования к измерительному оборудованию

Системное оборудование Эксплуатационное оборудование

функциональность тестов • портативность

возможность интеграции в системы • стоимость

быстрота и легкость модернизации • надежь

удобство эксплуатации • удобство эксплуатации

надежность • функциональность тестов

стоимость портативность

Для системного оборудования основным требованием является максимальная функциональность прибора: его спецификация тестов должна удовлетворять всем существующим и большинству перспективных стандартов и методологий. В противном случае прибор не обеспечит полной настройки и оценки параметров сети или тестируемого устройства.

Вторым требованием является возможность интеграции в системы приборов и интеграции с вычислительными средствами и сетями передачи данных. Это также существенно в условиях создания TMN, куда должны быть включены и измерительные средства.

Требование модернизируемости важно в силу быстрого развития технологии и принятия новых стандартов.

Удобство работы является следующим по важности параметром. Имеется ряд многофункционального системного оборудования с "недружественными" интерфейсами. Использование таких приборов требует от специалиста долгого изучения прибора, что не всегда эффективно.

Стоимость для системного оборудования не является первичным критерием выбора, поскольку для приборов этого класса стоимость находится в прямой зависимости от функциональности. Портативность для этого класса оборудования не требуется.

В то же время эксплуатационное оборудование, в первую очередь, должно быть портативным и дешевым, затем надежным и уже после этого многофункциональным.

Следует сразу отметить, что предлагаемая классификация измерительного оборудования является условной, учитывая общую тенденцию к миниатюризации в современной электронной промышленности. В связи с этим системное оборудование становится постепенно портативным, тогда как эксплуатационное оборудование становится все более многофункциональным.

Тем не менее разделение оборудования на системное и эксплуатационное полезно при сравнении оборудования различных производителей.


3. Методология измерений

В философском смысле методология - это учение о структуре, логической организации, методах и средствах деятельности человека. Необходимость использования в настоящей книге понятия "методология" обусловлена тем, что в отечественной литературе нет понятия, определяющего общие подходы и внутреннюю логику проведения измерений. Использовать для этой цели понятия "метод", "технология" и "методика" не совсем корректно. Поэтому в дальнейшем для описания "внутренней технологии" эксплуатационных измерений будем пользоваться понятием "методология", как наиболее подходящим для этой цели.


4. Основная задача методологии измерений. Особенности методологии измерений сигналов систем связи

Основной задачей методологии измерений в современной технике является разработка методик измерения физических величин, связанных с работой технических средств. Наука XX века убедительно показала, что техническими средствами невозможно без ошибок определить значение теоретической величины. Так при проектировании технических средств в основу расчета закладываются теоретические величины, которые на практике могут быть измерены только в некотором приближении. Поэтому в ряде случаев экспериментальные данные служат для оценки параметра теоретической величины. Лучше всего это видно на следующем примере.

Пример 4.1. Для проектирования работы цифровых систем передачи необходимо учитывать влияние ошибок, возникающих по тем или иным причинам в системе. Основным параметром расчета здесь выступает вероятность возникновения ошибки p(t), которая является функцией времени и зависит от ряда факторов и значений параметров, связанных с различным влиянием на систему. Примерами такого влияния может служить интерференция сигналов в радиочастотных системах передачи, алгоритмический джиггер в системах SDH и т.д.

В зависимости от природы влияния на систему, характер функции p(t) может существенно отличаться для различных систем. Для проектирования необходим расчет функции вероятности в зависимости от параметров внешнего влияния на систему для определения качественных параметров работы проектируемой системы, определения ее устойчивости к внешним условиям и т.д. Проверить результаты расчетов можно только путем проведения эксперимента или путем измерений на опытном образце. Однако теоретическая величина - функция вероятности возникновения ошибки в системе - не может быть измерена. Вместо нее измеряется параметр ошибки по битам - BER, который может быть представлен как:


nr ,n BITSerr

ВЕК = , где BITSerr ~ количество битов, пораженных ошибками,

BITS

a BITS - общее количество переданных битов. Эта величина связана с функцией вероятности возникновения ошибки отношением:

К-во Просмотров: 248
Бесплатно скачать Курсовая работа: Измерительные технологии, их использование и развитие