Курсовая работа: Измерительные технологии, их использование и развитие

представляет собой математическое ожидание функции вероятности. По

значению математического ожидания функция вероятности может быть восстановлена лишь с определенной степенью достоверности.

В описанном примере для того, чтобы на основании результатов можно было бы восстановить функцию вероятности без ошибок, необходимо было бы проводить измерение ВЕЯ в течении бесконечно большого интервала измерений, что практически невозможно. Таким образом, полученное значение всегда оказывается неким приближением теоретического и зависит от условий измерения, которые определяются методологией измерений, ориентированной на минимизацию ошибки оценки теоретической величины.

В нашем примере основными параметрами измерения ВЕЯ выступают: алгоритм проведения измерений, интервал времени измерения и выбор тестовой последовательности для измерения. Значения этих параметров зависят от предполагаемого характера функции р(0 и должны определяться в ходе разработки методики измерений.

Знание методологии измерений не является обязательным для проведения эксплуатационных измерений при обслуживании современных систем связи, которые и составляют предмет настоящей книги. Тем не менее включение этого материала в книгу по технологии измерений необходимо хотя бы потому, что всегда остаются такие вопросы, как: "Когда я измеряю ВЕЯ, что же я действительно измеряю, как я это измеряю и не ошибаюсь ли я при измерении?" Для ответа на эти вопросы необходимо знать основы методологии измерений. Неправильно выбранная методология может привести к ошибке измерений, неправильной трактовке результатов и т.д. Поэтому даже самые общие сведения о методологии могут быть чрезвычайно полезны при организации эксплуатационных измерений.

Автор постарается не перегружать данный раздел математическими выкладками, которые могут быть найдены в специальной литературе по методологии. Цель данного раздела - показать основные методы измерений, которые затем будут встречаться в книге, выделить подходы к разработке методик измерений, нашедших отражение в международных стандартах. Тема методологии охватывает вторую часть книги и главы 4-7. Основной упор в материале делается на описание методологии эксплуатационных измерений цифровых каналов (гл. 6). Специфика цифровых сигналов и возможность их представления в виде диаграммы описана в гл. 5, это рассмотрение полезно, поскольку в дальнейшем приведенные диаграммы будут широко использоваться в материале книги, так что необходимо описание алгоритмов их построения. Широкий интерес к измерениям джиггера у отечественных специалистов привел к необходимости выделить методологию измерений джиггера в отдельную главу - гл. 7. Дополнительно, некоторые специальные вопросы методологии измерений параметров цифровых радиочастотных систем передачи рассматриваются в гл. 10. Представляется нецелесообразным отделять методологию измерений радиочастотных сред передачи от реальных практических методик эксплуатационных измерений.

Следует отметить, что основным предметом настоящего раздела является "внутренняя технология" измерений, а не конкретные методы эксплуатационных измерений. Читатели, ориентированные на изучение технологии эксплуатационных измерений при обслуживании сетей связи, могут без ущерба пропустить этот материал, используя его при необходимости как справочный.


5. Основные параметры, измеряемые в бинарном цифровом канале

Как уже отмечалось выше, технология измерений параметров бинарного цифрового канала является фундаментом для измерений любых цифровых каналов, в связи с чем практически все параметры, измеряемые в бинарном цифровом канале, будут встречаться в технологии измерений цифровых каналов первичной и вторичных цифровых сетей.

Прежде чем рассматривать технологию измерений параметров бинарного цифрового канала, необходимо определить эти параметры. Ниже приведены основные параметры, измеряемые в бинарном цифровом канале, которые описаны в соответствии с сокращениями, используемыми в меню большинства приборов. В основном это параметры, используемые для анализа характеристик бинарного канала согласно рекомендациям ITU-T G.821, G.826 и M.2100.

AS - availability seconds время готовности канала (с) - вторичный параметр, равный разности между общей длительностью теста и временем неготовности канала.

AS (%) - availability seconds относительное время готовности канала - параметр, характеризующий готовность канала, выраженный в процентах. В отличие от AS, AS (%) является первичным параметром и входит в число основных параметров рекомендации G.821. Его можно интерпретировать как вероятностную меру качества предоставляемого пользователю канала.

ВВЕ - background block error блок с фоновой ошибкой - блок с ошибками, не являющийся частью SES, применяется при анализе ошибок по блокам. Является важным параметром, вошедшим в рекомендацию ITU-T G.826.

BIT или BIT ERR- bit errors число ошибочных битов - параметр, используемый при анализе канала на наличие битовых ошибок, является числителем в выражении для расчета BER. Битовые ошибки подсчитываются только во время пребывания канала в состоянии готовности.

ЕВ - error block число ошибочных блоков - параметр, используемый при анализе канала на наличие блоковых ошибок, является числителем в выражении для расчета BLER. Блоковые ошибки подсчитываются только во время пребывания канала в состоянии готовности.

BBER - background block error rate коэффициент ошибок по блокам с фоновыми ошибками - отношение числа блоков с фоновыми ошибками ко всему количеству блоков в течение времени готовности канала за исключением всех блоков в течении SES. Является важным параметром, вошедшим в рекомендацию ITU-T G.826.

BER или RATE - bit error rate частота битовых ошибок, коэффициент ошибок по битам -основной параметр в системах цифровой передачи, равный отношению числа битовых ошибок к общему числу бит, переданных за время проведения теста по ?

К-во Просмотров: 228
Бесплатно скачать Курсовая работа: Измерительные технологии, их использование и развитие