Курсовая работа: Изучение функций в курсе математики VII-VIII классов
прямо пропорциональные и обратно пропорциональные.
Прямо пропорциональные :
1. Длина пути, пройденная равномерно движущимся телом, и время, затраченное на этот путь.
2. Длина окружности и ее радиус.
3. Длина сторон прямоугольника и его периметр (площадь).
Обратно пропорциональные :
1. Радиус колеса и число совершаемых им оборотов на определенном отрезке пути.
2. Скорость движения и время в пути.
Пропорциональность - такая зависимость между величинами, при которой увеличение одной из них влечет за собой изменение во столько же раз другой величины.
Прямая и обратная пропорциональные зависимости выражаются формулами: y = a · x и y = a /x , (x отличен от нуля), где x и y - переменные величины, а - коэффициент пропорциональности, который и показывает, во сколько раз происходят изменения. а - действительное число отличное от нуля. Эти зависимости можно изобразить графически. »
В качестве закрепления понятий прямой и обратной пропорциональной зависимости преподаватель может дать несколько заданий:
1) Определить, является ли прямой пропорциональной, обратной пропорциональной или не является пропорциональной зависимость между величинами:
а) путем, пройденным автомашиной с постоянной скоростью, и временем ее движения;
б) скоростью движения и временем, если длина пути 120 км;
в) количеством машин и их грузоподъемностью;
г) стоимостью товара, купленной по одной цене, и его количеством;
д) объемом прямоугольного параллелепипеда и высотой, если площадь его основания 15 дм2 ;
е) числом рабочих, выполняющих с одинаковой производительностью труда некоторую работу и временем выполнения работы;
ж) площадью квадрата и длиной его стороны;
з) ростом ребенка и его возрастом.
2) Задача на прямо пропорциональную зависимость:
Расстояние между городами А и В на карте равно 5,6 см, а на местности 420 км.
Какое расстояние между городами С и Д на местности, если на этой же карте расстояние между ними 3,6 см?
3) Задача на обратную пропорциональную зависимость:
28 рабочих могут выполнить строительные работы за 17 дней.
Сколько нужно рабочих, чтобы выполнит те же работы за 14 дней, если производительность труда останется неизменной?
Методика изучения линейной, квадратной и кубической функции в VII классе.
Большинство изучаемых в школьной математике функций образует классы, обладающие общностью аналитического способа задания функции из него, сходными особенностями графиков, областей применения. Освоение индивидуально заданной функции происходит в сопоставлении черт, специфических для неё, с общим представлением о функции непосредственно, без выделения промежуточных звеньев. Однако длительность периода независимого рассмотрения каждой функции незначительна; в курсе алгебры вслед за введением понятия о функции сразу рассматривается первый класс – линейные функции. Для функций, входящих в класс, изучение происходит по более сложной схеме, поскольку в нём выделяются новые аспекты: изучение данной функции как члена класса и изучение свойств всего класса на примере «типичной» функции этого класса.
Типичный и одновременно важнейший для математики класс функций — линейные функции, которые мы рассмотрим с точки