Курсовая работа: Кинетическое и термодинамическое исследование физико-химических процессов
Из химических методов объемные определения являются наиболее распространенными. На пример, изучение кинетики разложения перекиси водорода в щелочных растворах в присутствии катализаторов. Эта реакция катализируется очень малыми примесями солей меди; скорость ее контролируют отбором проб через известные промежутки времени и определением содержания в них перекиси водорода иодометрическим методом (добавляют иодид калия, молибдат аммония, подкисляют и титруют выделившийся иод тиосульфатом).
Главное достоинство химических методов анализа — возможность непосредственного измерения абсолютных концентраций реагирующих веществ или продуктов реакции. Недостатки этих методов—невозможность непрерывного измерения концентрации и, как правило, продолжительность самого определения.
В физико-химических методах анализа измеряется изменение во времени какого-нибудь физического свойства системы (раствора). Например, изменение объема выделяющегося газа, оптической плотности раствора, показателя преломления, электропроводности, силы диффузионного тока, потенциала определенного электрода, люминесценции и т. п.
Достоинствами этой группы методов является быстрота определений, возможность выполнения измерений непосредственно в реакционном сосуде без предшествующего отбора проб, без нарушения равновесия в системе. Во многих случаях удается проводить непрерывную и даже автоматическую запись, благодаря чему в распоряжении экспериментатора имеется по сути неограниченное число точек.
Подавляющее большинство физических свойств веществ в растворах связано линейной зависимостью с их концентрацией:
Р= εхχ
где Р—количественная характеристика свойства раствора;
χ—концентрация продукта реакции X;
εх—коэффициент пропорциональности (например, молярный коэффициент погашения вещества X).
Если данное свойство характерно для нескольких веществ (например, для А и X), то зависимость более сложная:
Р=εa(a-χ)+ εхχ
После введения обозначений Р0= εaa и P∞= εaa и преобразований получаем:
Р=P0+( P∞-P0)x/a
Газоволюметрический метод определения скорости реакции основан на измерении объема выделяющегося газообразного продукта реакции. Между объемом газа и числом молей образовавшегося продукта реакции существует простейшая зависимость, определяемая законом Авогадро.
Для стандартных условий (температура 25 °С и давление 1 атм) число молей (п) образовавшегося продукта реакции
равно:
n=V/24400
где V—объем выделившегося газа, мл.
В качестве примера можно привести изучение кинетики каталитического разложения перекиси водорода в щелочном растворе на основании, измерения объема выделившегося кислорода нитрометром Лунге.
Из оптических методов при изучении кинетики каталитических реакций в растворах наибольшее распространение в последние годы получили колориметрический и спектрофотометрический методы анализа. Оба метода основаны на измерении оптической плотности растворов и отличаются лишь тем, что в случае колориметрического метода используют белый свет или участки спектра, выделенные при помощи широкополосых светофильтров, а в случае спектрофотометрического анализа применяется монохроматический свет.
Между оптической плотностью и концентрацией окрашенного вещества в растворе существует простая зависимость, вытекающая из закона Бугера—Ламберта—Бера:
D=εlC
где D—оптическая плотность раствора;
ε — молярный коэффициент погашения;
l—толщина поглощающего слоя.
В качестве примеров применения этих методов приведем каталитические реакции окисления иодид-иона перекисью водорода и тиосульфат-иона—ионом железа (III)
H2O2 + 2I- + 2H+ = 2H2O + I2
2Fe3+ + 2S2O32- = 2Fe2+ + S4O62-
В первом случае в реакционную смесь вводят крахмал и скорость реакции измеряют по оптической плотности образовавшегося иодкрахмала (оптическая плотность непрерывно увеличивается), во втором случае в раствор добавляют роданид калия или аммония и скорость реакции измеряют по оптической плотности роданидного комплекса железа (оптическая плотность непрерывно уменьшается).