Курсовая работа: Классификация групп с перестановочными обобщенно максимальными подгруппами

Доказательство. Предположим, что теорема не верна, и пусть - контрпример минимального порядка. Доказательство разобьем на следующие этапы.

(1) Для любой неединичной нормальной в подгруппы факторгруппа метанильпотентна.

Рассмотрим факторгруппу . Пусть - произвольная максимальная в подгруппа и - произвольная -максимальная подгруппа. Тогда максимальна в и -максимальна в , а значит, по условию подгруппа -перестановочна с подгруппой . Но тогда, согласно лемме , подгруппа -перестановочна с подгруппой . Итак, условие теоремы выполняется в . Но и поэтому согласно выбора группы , мы имеем (1).

(2) - разрешимая группа.

Если в группе существует единичная -максимальная подгруппа, то теорема очевидно справедлива. Предположим, что в группе все -максимальные подгруппы отличны от единицы. Докажем, что для каждой максимальной подгруппы группы , . Пусть - максимальная подгруппа группы . Тогда по условию для каждого , мы имеем . Ввиду леммы , и, следовательно, . Значит, . Поскольку , то и поэтому по выбору группы мы заключаем, что - разрешимая группа. Это означает, что разрешима, и следовательно, - разрешимая группа.

(3) Группа имеет единственную минимальную нормальную подгруппу и , где и - максимальная в подгруппа, которая не является нильпотентной группой.

Пусть - произвольная минимальная нормальная подгруппа группы . Так как класс всех метанильпотентных групп образует насыщенную формацию (см. лемму ), то - единственная минимальная нормальная подгруппа в , причем . В силу (2), является элементарной абелевой -группой для некоторого простого . Пусть - максимальная подгруппа в такая, что . Пусть . Ясно, что . Так как , мы в

К-во Просмотров: 179
Бесплатно скачать Курсовая работа: Классификация групп с перестановочными обобщенно максимальными подгруппами