Курсовая работа: Конструирование зубчатого мотор редуктора автоматических устройств
- угол начального конуса ведущего конического колеса.
осевое:
Для конической передачи справедливы соотношения:
Векторы окружных усилий
на ведущих колесах направлены в сторону, противоположную угловой скорости вращения вала. Вращение вала электродвигателя следует принять по часовой стрелке.
Радикальные усилия
направлены по радиусу к центру колес.
В конической прямозубой передаче осевые усилия
всегда направлены от вершин к основаниям конусов.
3.3 Приведение сил к оси вала
Окружные и осевые нагрузки на вал от зубчатых колес передаются с помощью штифтов.
Для получения расчетной схемы вала необходимо все силы, действующие на зубчатые колеса, привести к оси вала.
В поперечном сечении вала действуют следующие силовые факторы: продольная сила N=Fa , которая, в зависимости от установки вала в опорах, может вызывать растяжение или сжатие, поперечная сила Ft , вызывающая изгиб вала в плоскости V; моменты Ми , изгибающий вал в плоскости V и Mk , вызывающий кручение в плоскости W.
3.4 Определение эквивалентных моментов действующих в поперечных сечениях вала.
Основным критерием работоспособности валов является прочность. Валы кроме кручения испытывают изгиб и растяжение или сжатие, поэтому требуется определить эквивалентные моменты. Эпюры эквивалентных моментов позволяют выявить сечения, где возникают наибольшие моменты, и найти действительное распределение напряжений по длине вала.
При составлении расчетной схемы вал рассматривают как балку с шарнирно – подвижной и шарнирно – неподвижной опорами. Балка в соответствии с приведением сил нагружается сосредоточенными силами и моментами. Точки приложения сил моментов принимаются по середине длины элемента, передающего их.
На листе 3 предоставлена расчетная схема выходного вала редуктора, на котором установлено коническое зубчатое колесо. Силы Fa и Fr действуют в плоскости V, а Ft – в плоскости H. Силы Fa , при перенесении её к оси вала создаст в поперечных сечениях продольную силу, равную ей по величине и одинаковую по направлению, и изгибающий момент
(d – делительный диаметр конического колеса). Следовательно, силы, действующие на вал, целесообразно рассматривать, последовательно составляя расчетные схемы вала в плоскости V, а затем в плоскости H.
После определения опорных реакций и построения эпюр изгибающих моментов в каждой плоскости следует геометрически сложить эти эпюры, определив для каждого сечения вала значения суммарного изгибающего момента:
Эквивалентный момент по III теории прочности определяется из выражения:
где МК – крутящий момент.
Крутящий момент передается на вал от зубчатого колеса через ступицу и штифт.
3.5 Уточненный расчет вала.
Уточненный расчет учитывает все факторы, влияющие на усталостную прочность: характер напряжений, наличие концентраторов напряжений, абсолютные размеры валов, обработку поверхностей и прочностные характеристики материалов, из которых изготовлены валы.
Для валов запас прочности определяют из выражения: