Курсовая работа: Контрольные карты Шухарта контроль по доле дефектных изделий распределение параметра дискр

Данные для с-карты должны состоять из подсчетов общего числа дефектов (данного типа), обнаруженных в исследуемой области. Следовательно, кон­тролер должен продолжать поиск дефектов и после обнаружения первого из них (пусть даже самого серьезного!). Многим контролерам бывает трудно привыкнуть к этому, особенно для дискретных изделий.

Другой важный аспект использования с-карт связан с тем, что при малых средних распределение Пуассона сильно скошено. А скошенность меняет вероятности случаев ложных тревог. Если среднее значение дефектов в вы­борке менее 1, то вероятность превышения верхнего предела на уровне За составляет 3-4%; для среднего числа дефектов от 1 до 3 вероятность ложной тревоги равна 2%; для среднего числа дефектов от 3 до 10 — 1%; для интервала от 7 до 12 вероятность ложной тревоги составляет приблизительно 0,5%. В то же время приведенные уравнения для пределов не дает нижнего кон­трольного предела, пока среднее число дефектов не превышает 9. По этой причине трудно обнаружить какие бы то ни было улучшения процесса, если среднее число дефектов меньше 10.

Такие проблемы при работе с обычными трехсигмовыми пределами пре­одолимы. Регулярные пределы слишком консервативны, чтобы быть прак­тически полезными. Однако, поскольку предположения, которые оправды­вают использование с-карты, в то же время оправдывают и использование распределения Пуассона, существует простой путь избавления от обоих не­достатков Зσ-пределов для пуассоновских данных. Этот путь заключается в использовании контрольных пределов, соответствующих вероятности 0,005 и 0,995, представленных в таблице 7. И несмотря на то, что верхний предел, соответствующий 0,995 может оказаться как выше, так и ниже предела 3σ, вероятность того, что некое измерение окажется выше 0,995, никогда не превышает 0,005, если процесс управляем. Аналогично, хотя нижний предел для 0,005 всегда находится выше, чем 3σ-предел, вероятность того, что некое измерение окажется ниже его, никогда не превышает 0,005. Таким образом, эти пределы минимизируют риск ложных тревог и тем самым обеспечивают баланс между чувствительностью к улучшению ухудшению процесса. Это разумная альтернатива применению в с-картах контрольных пределов на уровне 3σ.

2.6. Карты для числа дефектов на единицу области определения

Если область определения меняется от выборки к выборке, нельзя прямо сравнивать величины. Прежде чем нанести такие данные на карту, их надо преобразовать в дроби. Если эти данные удовлетворяют условиям примени­мости вероятностной модели Пуассона, полученные дроби станут дефектами на единицу области определения. Такие дроби обычно получаются делением числа дефектов с на соответствующую область определения ai Полученные значения ui наносятся на карту хода процесса.

Теперь хотелось бы обратить внимание на то, что, если вариация ai случайна по своей природе и, следовательно, значения к. представляют собой отношения двух случайных величин, применять контрольные пределы u-карты в данном случае нельзя. С другой стороны, если вариация ai задается искус­ственно или внутренне присуща (например, если она основана на физических различиях деталей), то можно приближенно использовать контрольные пределы, процедура расчета которых показана ниже.

Среднюю долю дефектов на единицу области определения, обычно обо­значаемую символом и, можно рассчитать так:

Таким образом, u представляет собой средневзвешенное значение на единицу области определения. Как только определена величина u, можно рассчитать контрольные пределы:

Верхний контрольный предел:

Центральная линия:

нижний контрольный предел:

(если положителен).

Подобно р-карте, контрольные пределы u-карты изменяются вместе с о?

К-во Просмотров: 279
Бесплатно скачать Курсовая работа: Контрольные карты Шухарта контроль по доле дефектных изделий распределение параметра дискр