Курсовая работа: Корреляционный анализ

Коэффициент ранговой корреляции целесообразно использовать в следующих случаях:

- если экспериментальные данные представляют собой точно измеренные значения признаков Х и Y и требуется быстро найти приближенную оценку коэффициента корреляции. Тогда даже в случае двумерного нормального распределения генеральной совокупности можно воспользоваться коэффициентом ранговой корреляции вместо точного коэффициента корреляции Браве-Пирсона. Вычисления будут существенно проще, а точность оценки генерального параметра р с помощью коэффициента при больших объемах выборки составляет 91,2% по отношению к точности оценки по коэффициенту корреляций;

- когда значения xi и (или) yi заданы в порядковой шкале (например, оценки судей в баллах, места на соревнованиях, количественные градации качественных признаков), т. е. когда признаки не могут быть точно измерены, но их наблюдаемые значения могут быть расставлены в определенном порядке.

Пример 2. Определить достоверность взаимосвязи между показателями веса и максимального количества сгибания и разгибания рук в упоре лежа у 10 исследуемых с помощью расчета рангового коэффициента корреляции, если данные выборок таковы:

xi ,кг~55; 45; 43; 47; 47; 51; 48; 60; 53;50

yi , кол-во раз ~ 26; 20; 25; 22; 27; 28; 16; 15; 18; 24

Решение

1. Расчет рангового коэффициента корреляции Спирмена произведем по формуле:

где: dx и dy — ранги показателей х и у ;

n — число коррелируемых пар или исследуемых.

2 Данные тестирования занести в рабочую таблицу и сделать необходимые расчеты.

Таблица 2 – Данные тестирования

xi dx yi dy
55 9 26 9 0 0
45 2 20 4 -2 4
43 1 25 7 -6 36
47 3.5 22 5 -1.5 2.25
47 3.5 7 8 -4.5 20.25
51 7 28 10 -3 9
48 5 16 2 3 9
60 10 15 1 9 81
53 8 18 3 5 25
50 6 24 6 0 0
= 0 = 186,5

Тогда

3. Сравнить расчетное значение рангового коэффициента корреляции(rф =-0,13) с табличным значением для n = 10 при α = 5% и сделать вывод.

Вывод:

1) т.к. rф = -0,13 < 0, то между данными выборок наблюдается прямая отрицательная взаимосвязь, т.е. увеличением показателей веса вызывает снижение максимального количество сгибаний и разгибаний рук в упоре лежа в группе исследуемых;

2) т.к. rф = -0,13 < rst = 0,64 для n = 10 при α = 5%, то с уверенностью Р = 95% можно говорить о том, что выявленная зависимость недостоверна.

1.8 Основные свойства коэффициентов корреляции

К основным свойствам коэффициента корреляции необходимо отнести следующие:

- коэффициенты корреляции способны характеризовать только линейные связи, т.е. такие, которые выражаются уравнением линейной функции. При наличии нелинейной зависимости между варьирующими признаками следует использовать другие показатели связи;

- значения коэффициентов корреляции – это отвлеченные числа, лежащее в пределах от —1 до +1, т.е. -1 < r < 1;

- при независимом варьировании признаков, когда связь между ними отсутствует, r= 0;

- при положительной, или прямой, связи, когда с увеличением значений одного признака возрастают значения другого, коэффициент корреляции приобретает положительный знак и находится в пределах от 0 до +1, т.е. 0 < r < 1;

- при отрицательной, или обратной, связи, когда с увеличением значений одного признака соответственно уменьшаются значения другого, коэффициент корреляции сопровождается отрицательным знаком и находится в пределах от 0 до –1, т.е. -1 < r <0;

- чем сильнее связь между признаками, тем ближе величина коэффициента корреляции к 1. Если r = ±1, то корреляционная связь переходит в функциональную, т.е. каждому значению признака Х будет соответствовать одно или несколько строго определенных значений признака Y;

- только по величине коэффициентов корреляции нельзя судить о достоверности корреляционной связи между признаками. Этот параметр зависит от числа степеней свободы f= n –2, где n – число коррелируемых пар показателей Х и Y. Чем больше n, тем выше достоверность связи при одном и том же значении коэффициента корреляции. [2]

1.9 Проверка значимости коэффициентов корреляции

Для проверки значимости коэффициентов корреляции чаще всего используют распределение Стьюдента и условие:

, f = N – 2, α = 0,05.


Если условие выполняется, то гипотеза об отсутствии корреляционной связи принимается[5].

1.10 Критические значения коэффициента парной корреляции

Таблица 3 - Критические значения коэффициента парной корреляции при α=0,05

Число степеней свободы f Критиче-ское значение r Число степеней свободы f Критиче-ское значение r Число степеней свободы f

Критиче-

ское значение

r

1

2

3

4

5

6

7

8

0,997

0,950

0,878

0,811

0,754

0,707

0,666

0,632

9

10

11

12

13

14

15

16

0,602

0,576

0,553

0,532

0,514

0,497

0,482

0,468

17

18

19

20

30

50

80

100

0,456

0,444

0,433

0,423

0,349

0,273

0,217

0,195

Для проверки значимости коэффициента парной корреляции нужно сравнить его значение с табличным (критическим) значением r, которое приведено в таблице 3. Для пользования этой таблицей нужно знать число степеней свободы f = N – 2 и выбрать определенный уровень значимости, например равный 0,05. Такое значение уровня значимости называют еще 5%-ным уровнем риска, что соответствует вероятности верного ответа при проверке нашей гипотезы Р = 1 – α = 0,95, или 95%. Это значит, что в среднем только в 5% случаев возможна ошибка при проверке гипотезы.

К-во Просмотров: 1714
Бесплатно скачать Курсовая работа: Корреляционный анализ