Курсовая работа: Корреляционный анализ
Коэффициент ранговой корреляции целесообразно использовать в следующих случаях:
- если экспериментальные данные представляют собой точно измеренные значения признаков Х и Y и требуется быстро найти приближенную оценку коэффициента корреляции. Тогда даже в случае двумерного нормального распределения генеральной совокупности можно воспользоваться коэффициентом ранговой корреляции вместо точного коэффициента корреляции Браве-Пирсона. Вычисления будут существенно проще, а точность оценки генерального параметра р с помощью коэффициента при больших объемах выборки составляет 91,2% по отношению к точности оценки по коэффициенту корреляций;
- когда значения xi и (или) yi заданы в порядковой шкале (например, оценки судей в баллах, места на соревнованиях, количественные градации качественных признаков), т. е. когда признаки не могут быть точно измерены, но их наблюдаемые значения могут быть расставлены в определенном порядке.
Пример 2. Определить достоверность взаимосвязи между показателями веса и максимального количества сгибания и разгибания рук в упоре лежа у 10 исследуемых с помощью расчета рангового коэффициента корреляции, если данные выборок таковы:
xi ,кг~55; 45; 43; 47; 47; 51; 48; 60; 53;50
yi , кол-во раз ~ 26; 20; 25; 22; 27; 28; 16; 15; 18; 24
Решение
1. Расчет рангового коэффициента корреляции Спирмена произведем по формуле:
где: dx и dy — ранги показателей х и у ;
n — число коррелируемых пар или исследуемых.
2 Данные тестирования занести в рабочую таблицу и сделать необходимые расчеты.
Таблица 2 – Данные тестирования
xi | dx | yi | dy | ||
55 | 9 | 26 | 9 | 0 | 0 |
45 | 2 | 20 | 4 | -2 | 4 |
43 | 1 | 25 | 7 | -6 | 36 |
47 | 3.5 | 22 | 5 | -1.5 | 2.25 |
47 | 3.5 | 7 | 8 | -4.5 | 20.25 |
51 | 7 | 28 | 10 | -3 | 9 |
48 | 5 | 16 | 2 | 3 | 9 |
60 | 10 | 15 | 1 | 9 | 81 |
53 | 8 | 18 | 3 | 5 | 25 |
50 | 6 | 24 | 6 | 0 | 0 |
= 0 | = 186,5 |
Тогда
3. Сравнить расчетное значение рангового коэффициента корреляции(rф =-0,13) с табличным значением для n = 10 при α = 5% и сделать вывод.
Вывод:
1) т.к. rф = -0,13 < 0, то между данными выборок наблюдается прямая отрицательная взаимосвязь, т.е. увеличением показателей веса вызывает снижение максимального количество сгибаний и разгибаний рук в упоре лежа в группе исследуемых;
2) т.к. rф = -0,13 < rst = 0,64 для n = 10 при α = 5%, то с уверенностью Р = 95% можно говорить о том, что выявленная зависимость недостоверна.
1.8 Основные свойства коэффициентов корреляции
К основным свойствам коэффициента корреляции необходимо отнести следующие:
- коэффициенты корреляции способны характеризовать только линейные связи, т.е. такие, которые выражаются уравнением линейной функции. При наличии нелинейной зависимости между варьирующими признаками следует использовать другие показатели связи;
- значения коэффициентов корреляции – это отвлеченные числа, лежащее в пределах от —1 до +1, т.е. -1 < r < 1;
- при независимом варьировании признаков, когда связь между ними отсутствует, r= 0;
- при положительной, или прямой, связи, когда с увеличением значений одного признака возрастают значения другого, коэффициент корреляции приобретает положительный знак и находится в пределах от 0 до +1, т.е. 0 < r < 1;
- при отрицательной, или обратной, связи, когда с увеличением значений одного признака соответственно уменьшаются значения другого, коэффициент корреляции сопровождается отрицательным знаком и находится в пределах от 0 до –1, т.е. -1 < r <0;
- чем сильнее связь между признаками, тем ближе величина коэффициента корреляции к 1. Если r = ±1, то корреляционная связь переходит в функциональную, т.е. каждому значению признака Х будет соответствовать одно или несколько строго определенных значений признака Y;
- только по величине коэффициентов корреляции нельзя судить о достоверности корреляционной связи между признаками. Этот параметр зависит от числа степеней свободы f= n –2, где n – число коррелируемых пар показателей Х и Y. Чем больше n, тем выше достоверность связи при одном и том же значении коэффициента корреляции. [2]
1.9 Проверка значимости коэффициентов корреляции
Для проверки значимости коэффициентов корреляции чаще всего используют распределение Стьюдента и условие:
, f = N – 2, α = 0,05.
Если условие выполняется, то гипотеза об отсутствии корреляционной связи принимается[5].
1.10 Критические значения коэффициента парной корреляции
Таблица 3 - Критические значения коэффициента парной корреляции при α=0,05
Число степеней свободы f | Критиче-ское значение r | Число степеней свободы f | Критиче-ское значение r | Число степеней свободы f | Критиче- ское значение r |
1 2 3 4 5 6 7 8 | 0,997 0,950 0,878 0,811 0,754 0,707 0,666 0,632 | 9 10 11 12 13 14 15 16 | 0,602 0,576 0,553 0,532 0,514 0,497 0,482 0,468 | 17 18 19 20 30 50 80 100 | 0,456 0,444 0,433 0,423 0,349 0,273 0,217 0,195 |
Для проверки значимости коэффициента парной корреляции нужно сравнить его значение с табличным (критическим) значением r, которое приведено в таблице 3. Для пользования этой таблицей нужно знать число степеней свободы f = N – 2 и выбрать определенный уровень значимости, например равный 0,05. Такое значение уровня значимости называют еще 5%-ным уровнем риска, что соответствует вероятности верного ответа при проверке нашей гипотезы Р = 1 – α = 0,95, или 95%. Это значит, что в среднем только в 5% случаев возможна ошибка при проверке гипотезы.