Курсовая работа: Квантование сигналов по времени
т.к. .
После подстановки (8) в (7) окончательно получим
. (9)
Полученное выражение представляет аналитически теорему Котельникова.
Из (9) видно, что непрерывная функция X(t) (рисунок 2, а), обладающая ограниченным спектром, может быть представлена разложением в ряд, каждый член которого выражается одинаковой функцией вида sin(x)/x (функция отсчета), но с различными коэффициентами (рисунок 2, б).
Рисунок 2, а - Функция отсчета
Рисунок 2, б - Функция отсчета, но с различными коэффициентами
Ряд (9) представляет собой разложение случайного процесса с координатными функциями (детерминированными функциями времени) и весовыми коэффициентами , являющимися случайными величинами, равными мгновенным значениям сигнала в точках .
Функция отсчетов в момент времени достигает максимума и равна единице. В моменты времени , где i=1,2,3… функция отсчетов убывает, обращаясь в нуль при t=∞.
Сумма (9) в каждый k-ый момент времени определяется только одним k‑ым слагаемым, т.к. все остальные слагаемые в этот момент времени обращается в нуль. Внутри промежутка восстанавливаемая функция определяется всеми слагаемыми (рисунок 21, а - непрерывная плавная линия).
3.3 Воспроизведение непрерывного сигнала
Известно, что функция вида представляет собой реакцию идеального фильтра нижних частот с граничной частотой на дельта-функцию. Следовательно, если в приемном устройстве поместить такой фильтр и пропустить через него квантованный сигнал, представляющий собой последовательность с частотой весьма кратковременных импульсов, амплитуды которых пропорциональны отсчетам исходной непрерывной функции, то, суммируя выходные сигналы фильтра, можно воспроизвести с достаточно высокой степенью точности исходный непрерывный сигнал.
Однако нас интересует случай, когда сигнал x(t) ограничен во времени (Tc). В этом случае сумма (9) будет конечной
, (10)
где .
Усечение бесконечной суммы, т.е. ограничение ее теми значениями Xk, которые оказываются в пределах Tc, уменьшает точность представления сигнала x(t).
Это первый фактор, определяющий точность представления.
Кроме того, сигнал конечной длительности имеет бесконечный спектр гармонических составляющих. Поэтому ограничение спектра сигнала некоторой частотой является вторым фактором, снижающим точность представления непрерывного сигнала x(t) дискретными отсчетами.
Средний квадрат относительной погрешности в этом случае определяется выражением
,
где Е – полная энергия неограниченного спектра сигнала;
- энергия «хвоста» спектра, т.е. той его части, которая расположена за пределами fc .
Чтобы погрешность формулы (10) была мала, должно выполняться условие
. (11)
Дополнительная погрешность вносится при восстановлении сигнала x(t) за счет не идеальности фильтра нижних частот, т.к. идеальный фильтр НЧ физически нереализуем (предполагает наличие отклика на -функцию при t<0, т.е. до начала подачи на вход).
Однако на практике никогда не требуется идеально точное воспроизведение передаваемого сигнала, поэтому ограничивают спектр сигнала диапазоном с верхней частотой , в котором сосредоточена основная энергия сигнала.
Дисперсия приведенной погрешности, возникающей в результате усечения, будет
,