Курсовая работа: Линейное программирование
Содержание
Содержание
1. Пояснительная записка
1.1.Введение
2. Теоретическая часть
2.1 Элементы теории матричных игр
2.2 Решение матричных игр в чистых стратегиях
2.3 Решение матричных игр в смешанных стратегиях путём сведения к задаче линейного программирования
3. Практическая часть
3.1 Построение математической модели задачи
3.2 Выбор метода решения и привидения задачи к каноническому виду
3.3 Решение задачи путем сведения к задаче линейного программирования
- Блок схема к поставленной задачи
- Программа к поставленной задачи (программный код)
3.4 Анализ результата решения поставленной задачи
4. Вывод курсового проектирования
Заключение
Список основных источников
1. Пояснительная записка курсового проектирования
Цель данного курсового проекта - составить план производства требуемой продукции, обеспечивающий максимальную прибыль от выпускаемой продукции, свести данную задачу к задаче линейного программирования, решить её симплекс - методом и составить программу для решения задачи этим методом на ЭВМ.
1. КРАТКИЙ ОБЗОР АЛГОРИТМОВ РЕШЕНИЯ ЗАДАЧ ДАННОГО ТИПА 1.1 Математическое программирование.
Математическое программирование занимается изучение экстремальных задач и поиском методов их решения. Задачи математического программирования формулируются следующим образом : найти экстремум некоторой функции многих переменных f ( x1, x2, ... , xn ) при ограничениях gi ( x1, x2, ... , xn ) ( bi , где gi - функция, описывающая ограничения, ( - один из следующих знаков ( , ( , ( , а bi - действительное число, i = 1, ... , m. f называется функцией цели ( целевая функция ). Линейное программирование - это раздел математического программирования, в котором рассматриваются методы решения экстремальных задач с линейным функционалом и линейными ограничениями, которым должны удовлетворять искомые переменные. Задачу линейного программирования можно сформулировать так . Найти max [pic] при условии : a11 x1 + a12 x2 + . . . + a1n xn ( b1 ; a21 x1 + a22 x2 + . . . + a2n xn ( b2 ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . am1 x1 + am2 x2 + . . . + amn xn ( bm ; x1 ( 0, x2 ( 0, . . . , xn ( 0 . Эти ограничения называются условиями не отрицательности. Если все ограничения заданы в виде строгих равенств, то данная форма называется канонической. В матричной форме задачу линейного программирования, записывают следующим образом. Найти max cT x при условии A x ( b ; x ( 0 , где А - матрица ограничений размером (m(n), b(m(1) - вектор-столбец свободных членов, x(n ( 1) - вектор переменных, сТ = [c1, c2, ... , cn ] - вектор-строка коэффициентов целевой функции. Решение х0 называется оптимальным, если для него выполняется условие сТ х0 ( сТ х , для всех х ( R(x). Поскольку min f(x) эквивалентен max [ - f(x) ] , то задачу линейного программирования всегда можно свести к эквивалентной задаче максимизации. Для решения задач данного типа применяются методы:
1) графический;
2) табличный ( прямой, простой ) симплекс - метод;
3) метод искусственного базиса;
4) модифицированный симплекс - метод;
5) двойственный симплекс - метод.
1.2 Табличный симплекс - метод Для его применения необходимо, чтобы знаки в ограничениях были вида “ меньше либо равно ”, а компоненты вектора b - положительны. Алгоритм решения сводится к следующему :
1. Приведение системы ограничений к каноническому виду путём введения дополнительных переменных для приведения неравенств к равенствам.
2. Если в исходной системе ограничений присутствовали знаки “ равно ” или “ больше либо равно ”, то в указанные ограничения добавляются искусственные переменные, которые так же вводятся и в целевую функцию со знаками, определяемыми типом оптимума.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--