Курсовая работа: Линейное программирование
a) Для столбцов X вычисление элементов идет по формулам:
j = qij.
yi = y1+y2+…+yR.
Hi=F0.
Примечание: только для строк Y.
б) Для столбцов Y работает старая формула:
j = ciqij-cj.
2. Теоретическая часть
Математические модели
Математическая модель —приближенное описание объекта моделирования, выраженное с помощью математической символики.
Математические модели появились вместе с математикой много веков назад. Огромный толчок развитию математического моделирования придало появление ЭВМ. Применение вычислительных машин позволило проанализировать и применить на практике многие математические модели, которые раньше не поддавались аналитическому исследованию.Реализованная на компьютере математическая модельназывается компьютерной математической моделью,апроведение целенаправленных расчетов с помощью компьютерной моделиназываетсявычислительным экспериментом.
Этапы компьютерного математического моделированияизображены на рисунке (1).Первыйэтап—определение целей моделирования.Эти цели могут быть различными:
1. модель нужна для того, чтобы понять, как устроен конкретный объект, какова его структура, основные свойства, законы развития и взаимодействия с окружающим миром (понимание);
2. модель нужна для того, чтобы научиться управлять объектом (или процессом) и определить наилучшие способы управления при заданных целях и критериях (управление);
3. модель нужна для того, чтобы прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект (прогнозирование).
4. Построение математической модели. На этом этапе происходит переход от абстрактной формулировки модели к формулировке, имеющей конкретное математическое представление. Математическая модель — это уравнения, системы уравнений, системы неравенств, дифференциальные уравнения или системы таких уравнений .
Классификация математических моделей
В основу классификации математических моделей можно положить различные принципы. Можно классифицировать модели по отраслям наук (математические модели в физике, биологии, социологии и т.д.). Можно классифицировать по применяемому математическому аппарату (модели, основанные на применении обыкновенных дифференциальных уравнений, дифференциальных уравнений в частных производных, стохастических методов, дискретных алгебраических преобразований и т.д.).
Наконец, если исходить из общих задач моделирования в разных науках безотносительно к математическому аппарату, наиболее естественна такая классификация:
● дескриптивные (описательные) модели;
● оптимизационные модели;
●многокритериальные модели;
●игровые модели.
Рис. (1).Блок схема математического моделирования.
2.1 Элементы теории матричных игр
СВЕДЕНИЕ МАТРИЧНОЙ ИГРЫ К ЗАДАЧЕ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ
Предположим, что цена игры положительна (u> 0). Если это не так, то согласно свойству 6 всегда можно подобрать такое число с, прибавление которого ко всем элементам матрицывыигрышей даёт матрицу с положительными элементами, и следовательно, с положительным значением цены игры. При этом оптимальные смешанные стратегии обоих игроковне изменяются.
Итак, пустьданаматричная игра с матрицейАпорядкаm х n.Согласно свойству 7 оптимальные смешанные стратегиих =(х1, ..., хm), y =(y1, ..., yn) соответственно игроков 1 и 2 и цена игрыu должны удовлетворять соотношениям.