Курсовая работа: Малахит
Над образующимся осадком сульфата бария будет находиться раствор нитрата меди, который можно или декантировать, или отделить фильтрованием.
24. Если прогревать медный купорос в фарфоровой чашке, то постепенно будет происходить не только обезвоживание кристаллогидрата, но и разложение сульфата до оксида меди, сернистого газа и кислорода.
25. Знак (пустое множество) обозначает, что данную реакцию осуществить невозможно.
Механизм образования малахита в близком к истине приближении видится таким (исходные и включающиеся в процесс вещества взяты в рамки):
Образование малахита из азурита поддается объяснению, если учесть, что нерастворимые ионные кристаллы не абсолютно нерастворимы:
[8]
1. 5. Искусственный малахит.
Существует несколько способов получения искусственных минералов. Один из них – это создание композитных материалов спеканием порошка природного минерала в присутствии инертного связующего при высоком давлении. При этом происходит много процессов, из которых главные – это уплотнение и перекристаллизация вещества. Этот метод получил широкое распространение в США для получения искусственной бирюзы. Так же были получены жадеит, лазурит, другие полудрагоценные камни. В нашей стране композиты получали цементированием мелких обломков природного малахита размером от 2 до 5 мм с помощью органических отвердителей (наподобие эпоксидных смол) с добавлением в них красителей соответствующего цвета и тонкого порошка того же минерала в качестве наполнителя. Рабочую массу, составленную из указанных компонентов в определенном процентном отношении, подвергали сжатию при давлениях до 1 ГПа (10000 атм.) при одновременном нагревании свыше 100° С. В результате различных физических и химических процессов происходило прочное цементирование всех компонентов в сплошную массу, которая хорошо полируется. За один рабочий цикл таким образом получают четыре пластинки со стороной 50 мм и толщиной 7 мм. Правда, их довольно легко отличить от природного малахита.
Другой возможный способ – гидротермальный синтез, т.е. получение кристаллических неорганических соединений в условиях, моделирующих процессы образования минералов в земных недрах. Он основан на способности воды растворять при высоких температурах (до 500° С) и давлениях до 3000 атм. вещества, которые в обычных условиях практически нерастворимы – оксиды, силикаты, сульфиды. Ежегодно этим способом получают сотни тонн рубинов и сапфиров, с успехом синтезируют кварц и его разновидности, например, аметист. Именно этим способом был получен малахит, почти не отличающийся от природного. При этом кристаллизацию ведут в более мягких условиях – из слабощелочных растворов при температуре около 180°С и атмосферном давлении[5].
Сложность получения малахита в том, что для этого минерала главное – не химическая чистота и прозрачность, важная для таких камней как алмаз или изумруд, а его цветовые оттенки и текстура – неповторимый рисунок на поверхности отполированного образца. Эти свойства камня определяются размером, формой, и взаимной ориентацией отдельных кристалликов, из которых он состоит. Одна малахитовая «почка» образована серией концентрических слоев разной толщины – от долей миллиметра до 1,5 см разных оттенков зеленого цвета. Каждый слой состоит из множества радиальных волокон («иголочек»), плотно прилегающих друг к другу и подчас неразличимых простым глазом. От толщины волокон зависит интенсивность цвета. Например, тонкокристаллический малахит заметно светлее крупнокристаллического, поэтому внешний вид малахита, как природного, так и искусственного, зависит от скорости зарождения новых центров кристаллизации в процессе его образования. Регулировать такие процессы очень трудно; именно поэтому этот минерал долго не поддавался синтезу.
Получить искусственный малахит, не уступающий природному, удалось трем группам российских исследователей – в Научно-исследовательском институте синтеза минерального сырья (город Александров Владимирской области), в Институте экспериментальной минералогии Российской Академии наук (Черноголовка Московской области) и в Петербургском государственном университете. Соответственно было разработано несколько методов синтеза малахита, позволяющих получить в искусственных условиях практически все текстурные разновидности, характерные для природного камня – полосчатые, плисовые, почковидные. Отличить искусственный малахит от природного можно было разве что методами химического анализа: в искусственном малахите не было примесей цинка, железа, кальция, фосфора, характерных для природного камня. Разработка методов искусственного получения малахита считается одним из наиболее существенных достижений в области синтеза природных аналогов драгоценных и поделочных камней. Так, в музее упомянутого института в Александрове стоит большая ваза, изготовленная из синтезированного здесь же малахита. По всем своим свойствам синтетический малахит способен заменить природный камень в ювелирном и камнерезном деле. Его можно использовать для облицовки архитектурных деталей как внутри, так и снаружи зданий.
Искусственный малахит с красивым тонкослоистым рисунком производится также в Канаде, в ряде других стран.
II. Практическая часть. 2.1. Получение малахита.
Получение малахита по приведенному ниже методу является наиболее простым и удобным. Преимущество заключается в том, что эксперимент не требует много времени, используются доступные реагенты, причем в небольшом количестве, а так же обеспечивается высокий процент практического выхода.
Для получения малахита (Cu2(OH)2CO3) необходимо:
1)Реактивы:
NaHCO3 – 4,065 г.
CuSO4·5H2O – 5,5 г.
2) Приборы:
Фарфоровая ступка с пестиком – 1, термический стакан – 250 мл, штатив, стеклянная палочка – 2, воронка Бюхнера – 1, колба Бунзана – 1, фильтровальная бумага, пробирка, горелка.
Ход работы.
В фарфоровой ступке смешали 5,5 г. тонко стёртой сухой соли CuSO4 ·5H2O с гидрокарбонатом натрия 4,065 г.
В стакане нагрели до кипения 100 мл. воды. Смесь высыпали небольшими порциями в кипящую воду, быстро перемешивая. При этом наблюдается вспенивание. Следующую порцию смеси вносили после прекращения вспенивания. Содержимое стакана кипятили 10-15 мин для удаления из раствора СО2. В результате реакции образуется гидроксокарбонат меди:
2CuSO4 + 4NaHCO3 = CuCО3·Cu(OH)2↓ + 2Na2SO4+3CO2↑ + H2O. (*)
Осадку давали отстояться, затем промывали декантацией горячей водой, отмывая от иона SO42-; делали пробу на полноту промывания (4 раза). Основную соль сушили между листьями фильтровальной бумаги, а затем высушивали в сушильном шкафу при температуре около 40-60°С.
Расчёт и материальный баланс.
Массы исходных веществ:
m (NaHCO3)=4,065г