Курсовая работа: Математическая статистика

И здесь метод построения схемы событий оказывается чудесным помощником - можно достаточно просто доказать, что

P(AÇB) =P(A)·P(B). {1-5} Конечно же, формулы {1-4} и {1-5} годятся для любого количества событий: лишь бы они были несовместными в первом случае и независимыми во втором.

Наконец, возникают ситуации, когда случайные события оказываются взаимно зависимыми. В этих случаях приходится различать условные вероятности:

P(A / B) – вероятность A при условии, что B уже произошло;

P(A / ) – вероятность A при условии, что B не произошло,

называя P(A) безусловной или полной вероятностью события A .

Выясним вначале связь безусловной вероятности события с условными. Так как событие A может произойти только в двух, взаимоисключающих вариантах, то, в соответствии с {1–3} получается, что

P(A) = P(A/B)·P(B) + P(A/)· P(). {1–6}

Вероятности P(A/B) и P(A/) часто называют апостериорными (“a posteriopri” – после того, как…), а безусловную вероятность P(A) – априорной (“a priori” – до того, как…).

Очевидно, что если первым считается событие B и оно уже произошло, то теперь наступление события A уже не зависит от B и поэтому вероятность того, что произойдут оба события составит

P(AÇB) = P(A/B)·P(B). {1–7} Так как события взаимозависимы, то можно повторить наши выводы и получить

P(B) = P(B/A)·P(A) + P(B/)·P(); {1–8}

а также P(AÇB) = P(B/A)·P(A). {1–9}

Мы доказали так называемую теорему Байеса

P(A/B)·P(B) = P(B/A)·P(B); {1–10} – весьма важное средство анализа, особенно в области проверки гипотез и решения вопросов управления на базе методов прикладной статистики.

Подведем некоторые итоги рассмотрения вопроса о вероятностях случайных событий. У нас имеются только две возможности узнать что либо о величине вероятности случайного события A:

· применить метод статистического моделирования - построить схему данного случайного события и (если у нас есть основания считать, что мы правильно ее строим) и найти значение вероятности прямым расчетом;

· применить метод статистического испытания - наблюдать за появлением события и затем по частоте его появления оценить вероятность.

На практике приходится использовать оба метода, поскольку очень редко можно быть абсолютно уверенным в примененной схеме события (недостаток метода моделирования) и столь же редко частота появления события достаточно быстро стабилизируется с ростом числа наблюдений (недостаток метода испытаний ).

2. Распределения вероятностей случайных величин

2.1 Шкалирование случайных величин

Как уже отмечалось, дискретной называют величину, которая может принимать одно из счетного множества так называемых “допустимых” значений. Примеров дискретных величин, у которых есть некоторая именованная единица измерения, можно привести достаточно много.

Прежде всего, надо учесть тот факт что все физические величины (вес, расстояния, площади, объемы и т.д.) теоретически могут принимать бесчисленное множество значений, но практически - только те значения, которые мы можем установить измерительными приборами. А это значит, что в прикладной статистике вполне допустимо распространить понятие дискретных СВ на все без исключения численные описания величин, имеющих единицы измерения .

Вместе с тем надо не забывать, что некоторые СВ просто не имеют количественного описания, естественных единиц измерения (уровень знаний, качество продукции и т. п.).

Покажем, что для решения вопроса о “единицах измерения” любых СВ, с которыми приходится иметь дело в прикладной статистике, достаточно использовать четыре вида шкал.

·Nom . Первой из них рассмотрим так называемую номинальную шкалу — применяемую к тем величинам, которые не имеют природной единицы измерения. В ряде случаев нам приходится считать случайными такие показатели предметов или явлений окружающего нас мира, как марка автомобиля; национальность человека или его пол, социальное положение; цвет некоторого изделия и т.п.

В таких ситуациях можно говорить о случайном событии - "входящий в магазин посетитель оказался мужчиной", но вполне допустимо рассматривать пол посетителя как дискретную СВ, которая приняла одно из допустимых значений на своей номинальной шкале.

Итак, если некоторая величина может принимать на своей номинальной шкале значения X, Y или Z, то допустимыми считаются только выражения типа: X # Y, X=Z , в то время как выражения типа X ³ Z, X + Z не имеют никакого смысла.

·Ord . Второй способ шкалирования – использование порядковых шкал . Они незаменимы для СВ, не имеющих природных единиц измерения, но позволяющих применять понятия предпочтения одного значения другому. Типичный пример: оценки знаний (даже при числовом описании), служебные уровни и т. п. Для таких величин разрешены не только отношения равенства (= или #), но и знаки предпочтения (> или <). Очень часто порядковые шкалы называют ранговыми и говорят о рангах значений таких величин.

·Int . Для СВ, имеющих натуральные размерности (единицы измерения в прямом смысле слова), используется интервальная шкала. Для таких величин, кроме отношений равенства и предпочтения, допустимы операции сравнения – т. е. все четыре действия арифметики. Главная особенность таких шкал заключается в том, что разность двух значений на шкале (36 и 12) имеет один смысл для любого места шкалы (28 и 4). Вместе с тем на интервальной шкале не имеют никакого смысла отрицательные значения, - если это веса предметов, возраст людей и подобные им показатели.

·Rel . Если СВ имеет естественную единицу измерения (например, - температура по шкале Цельсия) и ее отрицательные значения столь же допустимы, как и положительные, то шкалу для такой величины называют относительной .

К-во Просмотров: 320
Бесплатно скачать Курсовая работа: Математическая статистика