Курсовая работа: Математическая статистика

Несмотря на многообразие используемых в литературе определений термина “статистика”, суть большинства из них сводится к тому, что статистикой чаще всего называют науку, изучающую методы сбора и обработки фактов и данных в области человеческой деятельности и природных явлений.

В нашем курсе, который можно считать введением в курс “Экономическая статистика”, речь будет идти о так называемой прикладной статистике, - т.е. только о сущности специальных методов сбора, обработки и анализа информации и, кроме того, о практических приемах выполнения связанных с этим расчетов.

Великому американскому сатирику О’Генри принадлежит ироническое определение статистики: “Есть три вида лжи - просто ложь, ложь злостная и …статистика!”. Попробуем разобраться в причинах, побудивших написать эти слова.

Практически всему живому на земле присуще воспринимать окружающую среду как непрерывную последовательность фактов, событий. Этим же свойством обладают и люди, с той лишь разницей, что только им дано анализировать поступающую информацию и (хотя и не всем из них это удается) делать выводы из такого анализа и учитывать их в своей сознательной деятельности. Поэтому можно смело утверждать, что во все времена, все люди занимались и занимаются статистическими “исследованиями”, даже не зная иногда такого слова - “статистика”.

Все наши наблюдения над окружающем нас миром можно условно разделить на два класса:

· наблюдения за фактами - событиями, которые могут произойти или не произойти;

· наблюдения за физическими величинами, значения которых в момент наблюдения могут быть различными.

И атеист и верующий в бога человек, скорее всего, согласятся с несколько необычным заявлением - в окружающем нас мире происходят только случайные события, а наблюдаемые нами значения всех показателей внешней среды являются случайными величинами (далее везде – СВ) . Более того, далее будет показано, что иногда можно использовать только одно понятие - случайное событие.

Не задерживаясь на раскрытии философской сущности термина “случайность” (вполне достаточно обычное, житейское представление), обратимся к чрезвычайно важному понятию -вероятность . Этот термин обычно используют по отношению к событию и определяют числом (от 0 до 1), выражающим степень нашей уверенности в том, что данное событие произойдет. События с вероятностью 0 называют невозможными, а события с вероятностью 1 - достоверными (хотя это уже ­– неслучайные, детерминированные события).

Иногда в прикладной статистике приходится иметь дело с так называемыми редкими (маловероятными) событиями. К ним принято относить события, значение вероятности которых не превышает определенного уровня, чаще всего – 0.05 или 5 %.

В тех случаях, когда профессионалу-статистику приходится иметь дело со случайными величинами, последние часто делят на две разновидности:

· дискретные СВ, которые могут принимать только конкретные, заранее оговоренные значения (например, - значения чисел на верхней грани брошенной игральной кости или порядковые значения текущего месяца);

· непрерывные СВ (чаще всего - значения некоторых физических величин: веса, расстояния, температуры и т.п.), которые по законам природы могут принимать любые значения, хотя бы и в некотором интервале.

1.2 Вероятности случайных событий

Итак, основным “показателем” любого события (факта) А является численная величина его вероятности P(A), которая может принимать значения в диапазоне [0…1] - в зависимости от того, насколько это событие случайно. Такое, смысловое, определение вероятности не дает, однако, возможности указать путь для вычисления ее значения.

Поэтому необходимо иметь и другое, отвечающее требованиям практической работы, определение термина “вероятность”. Это определение можно дать на основании житейского опыта и обычного здравого смысла.

Если мы интересуемся событиемA, то, скорее всего, можем наблюдать, фиксировать факты его появления. Потребность в понятии вероятности и ее вычисления возникнет, очевидно, только тогда, когда мы наблюдаем это событие не каждый раз, либо осознаем, что оно может произойти, а может не произойти. И в том и другом случае полезно использовать понятие частоты появления события fA - как отношения числа случаев его появления (благоприятных исходов или частостей) к общему числу наблюдений.

Интуиция подсказывает, что частота наступления случайного события зависит не только от степени случайности самого события. Если мы наблюдали за событием всего пять раз и в трех случаях это событие произошло, то мало кто примет значение вероятности такого события равным 0.6 или 60 %. Скорее всего, особенно в случаях необходимости принятия каких–то важных, дорогостоящих решений любой из нас продолжит наблюдения. Здравый смысл подсказывает нам, что уж если в 100 наблюдениях событие произошло 14 раз, то мы можем с куда большей уверенностью полагать его вероятность равной 14 % .

Таким образом, мы (конечно же, - не первые) сформулировали второе определение понятия вероятности события - как предела, к которому стремится частота наблюдения за событием при непрерывном увеличении числа наблюдений. Теория вероятностей, специальный раздел математики, доказывает существование такого предела и сходимость частоты к вероятности при стремлении числа наблюдений к бесконечности. Это положение носит название центральной предельной теоремы или закона больших чисел.

Итак, первый ответ на вопрос - как найти вероятность события, у нас уже есть. Надо проводить эксперимент и устанавливать частоту наблюдений, которая тем точнее даст нам вероятность, чем больше наблюдений мы имеем.

Ну, а как быть, если эксперимент невозможен (дорог, опасен или меняет суть процессов, которые нас интересуют)? Иными словами, нет ли другого пути вычисления вероятности событий, без проведения экспериментов?

Такой путь есть, хотя, как ни парадоксально, он все равно основан на опыте, опыте жизни, опыте логических рассуждений. Вряд ли кто либо будет производить эксперименты, подбрасывая несколько сотен или тысячу раз симметричную монетку, чтобы выяснить вероятность появления герба при одном бросании! Вы будете совершенно правы, если без эксперимента найдете вероятность выпадения цифры 6 на симметричной игральной кости и т.д., и т.п.

Этот путь называется статистическим моделированием – использованием схемы случайных событий и с успехом используется во многих приложениях теоретической и прикладной статистики. Продемонстрируем этот путь, рассматривая вопрос о вероятностях случайных величин дальше. Обозначим величину вероятности того, что событие A не произойдет. Тогда из определения вероятности через частоту наступления события следует, что

P(A)+ = 1, {1–1}

что полезно читать так - вероятность того, что событие произойдет или не произойдет, равна 100 %, поскольку третьего варианта попросту нет.

Подобные логические рассуждения приведут нас к более общей формуле -сложения вероятностей . Пусть некоторое случайное событие может произойти только в одном из 5 вариантов, т.е. пусть имеется система из трех несовместимых событий A, B и C .

Тогда очевидно, что:

P(A) + P(B) + P(C) = 1; {1–2} и столь же простые рассуждения приведут к выражению для вероятности наступления одного из двух несовместимых событий (например, A или B):

P(AÈB) = P(A) + P(B); {1–3} или одного из трех:

P(AÈBÈC) = P(A) + P(B) + P(C); {1-4} и так далее.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 316
Бесплатно скачать Курсовая работа: Математическая статистика