Курсовая работа: Метод золотого перерізу для пошуку екстремумів функцій
f1:=f2;
x2:=a+alpha*(b-a);
f2:=f(x2);
end;
END;
x_opt:=(a+b)/2;
Edit4.Text:=FloatToStr(x_opt);
{--------------------------------}
xx:=ao;
h:=(bo-ao)/20;
for i:=1 to 20 do
begin
Series1.AddXY(xx,f(xx),'',clblue);
xx:=xx+h;
end;
end;
end.
4. Результат роботи програми
Рис. 1
Розв’язок вручну:
Розв’язок рівняння в роботі Розв’язок прикладу 2
Отже максимум = -1 при х = ±1, у = 4 – т. мінімума
а мінімум = 0,57 при х = ±2, у =13 – т. максимума
Висновок
Метод золотого перерізу належить до симетричних методів. Використовуючи цю ідею, можна будувати й інші симетричні методи, але як і в методі золотого поділу, їх потрібно досліджувати на стійкість.
Список використаної літератури
1. Сторнгин Р.Г. Численные методы в многоэкстремальных задачах (Информационно-статистические алгоритмы). – М.: Наука, 1978. –240 с.
2. Бейко И.В., Бублик Б.Н., Зинько П.Н. Методы и алгоритмы решения задач оптимизации. – К.: Вища школа, 1983. –512 с.