Курсовая работа: Метод золотого перерізу для пошуку екстремумів функцій

f1:=f2;

x2:=a+alpha*(b-a);

f2:=f(x2);

end;

END;

x_opt:=(a+b)/2;

Edit4.Text:=FloatToStr(x_opt);

{--------------------------------}

xx:=ao;

h:=(bo-ao)/20;

for i:=1 to 20 do

begin

Series1.AddXY(xx,f(xx),'',clblue);

xx:=xx+h;

end;

end;

end.


4. Результат роботи програми

Рис. 1

Розв’язок вручну:

Розв’язок рівняння в роботі Розв’язок прикладу 2


Отже максимум = -1 при х = ±1, у = 4 – т. мінімума

а мінімум = 0,57 при х = ±2, у =13 – т. максимума


Висновок

Метод золотого перерізу належить до симетричних методів. Використовуючи цю ідею, можна будувати й інші симетричні методи, але як і в методі золотого поділу, їх потрібно досліджувати на стійкість.


Список використаної літератури

1. Сторнгин Р.Г. Численные методы в многоэкстремальных задачах (Информационно-статистические алгоритмы). – М.: Наука, 1978. –240 с.

2. Бейко И.В., Бублик Б.Н., Зинько П.Н. Методы и алгоритмы решения задач оптимизации. – К.: Вища школа, 1983. –512 с.

К-во Просмотров: 237
Бесплатно скачать Курсовая работа: Метод золотого перерізу для пошуку екстремумів функцій