Курсовая работа: Методические особенности введения показательной функции в курсе математики средней школы
Определение Л. Эйлера гласит: «Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого количества и чисел или постоянных количеств».
Так понимали функцию на протяжении почти всего XVIII в. Даламбер, Лагранж и другие видные математики. Что касается Эйлера, то он не всегда придерживался этого определения; в его работах понятие функции подвергалось дальнейшему развитию в соответствии с запросами математической науки.
В некоторых своих произведениях Л. Эйлер придает более широкий смысл функции, понимая ее как кривую, начертанную «свободным влечением руки». В связи с таким взглядом Л. Эйлера на функцию между ним и его современниками, в первую очередь его постоянным соперником, крупным французским математиком Даламбером, возникла большая полемика вокруг вопроса о возможности аналитического выражения произвольной кривой и о том, какое из двух понятий (кривая или формула) следует считать более широким. Так возник знаменитый спор, связанный с исследованием колебаний струны.
В «Дифференциальном исчислении», вышедшем в свет в 1755 г, Л. Эйлер дает общее определение функции: «Когда некоторые количества зависят от других таким образом, что при изменении последних и сами они подвергаются изменению, то первые называются функциями вторых». «Это наименование, – продолжает далее Эйлер, – имеет чрезвычайно широкий характер; оно охватывает все способы, какими одно количество определяется с помощью других».
На основе этого определения Эйлера французский математик С.Ф. Лакруа в своем «Трактате по дифференциальному и интегральному исчислению», опубликованном в 1797 г., смог записать следующее: «Всякое количество, значение которого зависит от одного или многих других количеств, называется функцией этих последних независимо от того, известно или нет, какие операции нужно применить, чтобы перейти от них к первому».
Как видно из этих определений, само понятие функции фактически отождествлялось с аналитическим выражением. Новые шаги в развитии естествознания и математики в XIX в. вызвали и дальнейшее обобщение понятия функции.
Большой вклад в решение спора Эйлера, Даламбера, Д. Бернулли и других ученых XVIII в. по поводу того, что следует понимать под функцией, внес французский математик Жан Батист Жозеф Фурье (1768–1830), занимавшийся в основном математической физикой. В представленных им в Парижскую Академию наук в 1807 и 1811 гг., работах по теории распространения тепла в твердом теле Фурье привел и первые примеры функций, которые заданы на различных участках различными аналитическими выражениями. Из трудов Фурье явствовало, что любая кривая независимо от того, из скольких и каких разнородных частей она составлена, может быть представлена в виде единого аналитического выражения и что имеются также прерывные кривые, изображаемые аналитическим выражением. В своем «Курсе алгебраического анализа», опубликованном в 1821 г., французский математик О. Коши обосновал выводы Фурье. Таким образом, на известном этапе развития физики и математики стало ясно, что приходится пользоваться и такими функциями, для определения которых очень сложно или даже невозможно ограничиться одним лишь аналитическим аппаратом.
В 1834 г. в работе «Об исчезании тригонометрических строк» Н.И. Лобачевский, развивая вышеупомянутое эйлеровское определение функции в 1755г., писал:
«Общее понятие требует, чтобы функцией от х называть число, которое дается для каждого х и вместе с х постепенно изменяется. Значение функции может быть дано или аналитическим выражением, или условием, которое подает средство испытывать все числа и выбирать одно из них; или, наконец, зависимость может существовать и оставаться неизвестной… Обширный взгляд теории допускает существование зависимости только в том смысле, чтобы числа, одни с другими в связи, принимать как бы данными вместе».
Еще до Лобачевского аналогичная точка зрения на понятие функции была высказана чешским математиком Б. Больцано. В 1837 г. немецкий математик П. Лежен-Дирихле так сформулировал общее определение понятия функции: «у есть функция переменной х (на отрезке (a; b), если каждому значению х (на этом отрезке) соответствует совершенно определенное значение у, причем безразлично, каким образом установлено это соответствие – аналитической формулой, графиком, таблицей либо даже просто словами».
Прослеживая исторический путь развития понятия функции, невольно приходишь к мысли о том, что эволюция еще далеко не закончена и, вероятно, никогда не закончится, как никогда не закончится и эволюция математики в целом. Новые открытия и запросы естествознания и других наук приведут к новым расширениям понятия функции и других математических понятий.
Математика – незавершенная наука, она развивалась на протяжении тысячелетий, развивается в нашу эпоху и будет развиваться в дальнейшем.
1.2 Различные подходы к определению понятия функции
Обоснование функциональной линии как ведущей для школьного курса математики – одно из крупнейших достижений современной методики. Однако реализация этого положения может быть проведена многими различными путями; многообразие путей вызвано фундаментальностью самого понятия функции.
Для того чтобы составить представление об этом многообразии, сравним две наиболее резко различающиеся методические трактовки этого понятия; первую мы назовем генетической, а вторую – логической.
Генетическая трактовка понятия функции основана на разработке и методическом освоении основных черт, вошедших в понятие функции до середины XIX в. Наиболее существенными понятиями, которые при этой трактовке входят в систему функциональных представлений, служат переменная величина, функциональная зависимость переменных величин, формула (выражающая одну переменную через некоторую комбинацию других переменных), декартова система координат на плоскости.
Генетическое развертывание понятия функции обладает рядом достоинств.
В нем подчеркивается «динамический» характер понятия функциональной зависимости, легко выявляется модельный аспект понятия функции относительно изучения явлений природы. Такая трактовка естественно увязывается с остальным содержанием курса алгебры, поскольку большинство функций, используемых в нем, выражаются аналитически или таблично.
Генетическая трактовка понятия функции содержит также черты, которые следует рассматривать как ограничительные. Одним из очень существенных ограничений является то, что переменная при таком подходе всегда неявно (или даже явно) предполагается пробегающей непрерывный ряд числовых значений. Поэтому в значительной степени понятие связывается только с числовыми функциями одного числового аргумента (определенными на числовых промежутках). В обучении приходится, используя и развивая функциональные представления, постоянно выходить за пределы его первоначального описания.
Логическая трактовка понятия функции исходит из положения о том, что строить обучение функциональным представлениям следует на основе методического анализа понятия функции в рамках понятия алгебраической системы. Функция при таком подходе выступает в виде отношения специального вида между двумя множествами, удовлетворяющего условию функциональности. Начальным этапом изучения понятия функции становится вывод его из понятия отношения.
Реализация логического подхода вызывает необходимость иллюстрировать понятие функции при помощи разнообразных средств; язык школьной математики при этом обогащается. Помимо формул и таблиц, здесь находят свое место задание функции стрелками, перечислением пар, использование не только числового, но и геометрического материала; геометрическое преобразование при таком подходе оказывается возможным рассматривать как функцию.
В современном школьном курсе математики в итоге длительных методических поисков в качестве ведущего был принят генетический подход к понятию функции. Одновременно учитывается все ценное, что можно извлечь из логического подхода. Исходя из этого при формировании понятий и представлений, методов и приемов в составе функциональной линии система обучения строится так, чтобы внимание учащихся сосредоточивалось, во-первых, на выделенных и достаточно четко разграниченных представлениях, связанных с функцией, и, во-вторых, на установлении их взаимодействия при развертывании учебного материала. Иными словами, в обучении должна быть выделена система компонентов понятия функции и установлена связь между ними. В эту систему входят такие компоненты:
– представление о функциональной зависимости переменных величин в реальных процессах и в математике;
– представление о функции как о соответствии;
– построение и использование графиков функций, исследование функций;
– вычисление значений функций, определенных различными способами.
В процессе обучения алгебре все указанные компоненты присутствуют при любом подходе к понятию функции, но акцент может быть сделан на одном из них. Как только что мы отметили, функциональный компонент является основой введения и изучения понятия функции. На этой основе при организации работы над определением вводятся и другие компоненты, проявляющиеся в различных способах задания функциональной.
Понятие функции, в системе формирования которого должны присутствовать такие задания, сразу выступает в курсе математики как определённая математическая модель, что и является мотивировкой для его углублённого изучения.
2 Методика введения понятия функция