Курсовая работа: Методические особенности введения показательной функции в курсе математики средней школы

Для этого подхода характерно первоначальное, полное и сжатое изложение учебного материала, пусть даже малопонятного при первом прочтении, и дальнейшая углубленная проработка всех примеров, терминов и определений. Такой подход к изучению функций и не только их позволяет учащимся самостоятельно попытаться проследить логические связи в излагаемом материале, резко увеличивает интенсивность мыслительной деятельности, способствует более активному и глубокому запоминанию.

Вот как выглядит изложение той же темы «Понятие функции» в соответствии с дедуктивным подходом:

1. Зависимости одной переменной от другой называют функциональными зависимостями.

2. Зависимость переменной у от переменной х называют функцией, если каждому значению х соответствует единственное значение у. При этом используют запись у = f (х).

3. Переменную х называют независимой переменной или аргументом, а переменную у – зависимой переменной. Говорят, что у является функцией от х.

4. Значение у, соответствующее заданному значению х, называют значением функции.

5. Все значения, которые принимает независимая переменная, образуют область определения функции; все значения, которые принимает зависимая переменная образуют множество значений функции.

6. Для функции f приняты обозначения: D (f) (область определения функции, E(f) (множество значений функции, f () (значение функции в точке ).

7. Если D(f)= R и E(f)= R, то функцию называют числовой.

8. Элементы множества D(f) также называют значениями аргумента, а соответствующие им элементы E (f) значениями функции.

9. Если функция задана формулой и область определения функции не указана, то считают, что область определения состоит из всех значений независимой переменной, при которых эта формула имеет смысл.

10. Графиком функции называют множество всех точек, абсциссы которых равны значениям аргумента, а ординаты (соответствующим значениям функции.

Затем, на следующих уроках, происходит детальный разбор этого материала при активной работе учащихся. Тщательно рассматриваются все определения, прорешиваются примеры – идет усвоение нового материала.

2.2 Методика введения показательной функции

Изучение темы «Показательная функция» в курсе алгебры и начала анализа предусматривает знакомство учащихся с вопросами:

Обобщение понятия о степени; понятие о степени с иррациональным показателем; решение иррациональных уравнений и их систем; показательная функция, ее свойства и график; основные показательные тождества:

; ;


тождественные преобразования показательных выражений; решение показательных уравнений, неравенств и систем; понятие об обратной функции; функция, ее свойства и график;

Основная цель – привести в систему и обобщить имеющиеся у учащихся сведения о степени, ознакомить их с показательной функцией и ее свойствами, научить решать несложные показательные уравнения, их системы (содержащие также и иррациональные уравнения).

Рассматриваются свойства и график показательной функции. Систематизация свойств указанной функции осуществляется в соответствии с принятой схемой исследования функций. Приведен краткий обзор свойств степенной функции в зависимости от различных значений показателя р.

Особое внимание уделяется показательной функции как той математической модели, которая находит наиболее широкое применение при изучении процессов и явлений окружающей действительности. Рассматриваются примеры различных процессов (например, радиоактивный распад, изменение температуры тела); показывается, что решение дифференциальных уравнений, описывающих эти процессы, является показательная функция. В связи с этим для показательной функции дается формула производной, вывод которой проводится с привлечением интуитивных представлений учащихся.

В ходе изучения свойств показательной функцией учащиеся систематически решают простейшие показательные уравнения и неравенства, а также иррациональные уравнения. По мере закрепления соответствующих умений целесообразно также предлагать им уравнения и неравенства, сводящиеся к простейшим в результате несложных тождественных преобразований.

Появление вычислительной техники в школе открыло возможности, которые связаны с интеграцией новых информационных технологий в учебный процесс по различным школьным предметам. В настоящее время применение различных видов прикладного программного обеспечения носит преимущественно эпизодический характер.

На изучение темы отводится 6 часов. Поурочное планирование следующее:

1 урок – лекция;

2 урок – практикум по решению задач.

Решение показательных уравнений и неравенств:

1 урок – решение типовых задач;

2 урок – практикум по решению задач;

К-во Просмотров: 357
Бесплатно скачать Курсовая работа: Методические особенности введения показательной функции в курсе математики средней школы