Курсовая работа: Методика изучения геометрических величин в курсе геометрии средней школы
При изучении величин углов можно использовать следующую схему:
Общий обзор углов – углы с общей вершиной – градусное измерение углов.
В учебной методческой литературе угол определяется по разному:
1. Угол есть фигура, образованная двумя лучами, выходящими из общей точки.[10, стр. 9],[6,стр 12]
2. Угол есть неопределенная часть плоскости, заключенная между двумя лучами, выходящими из общей точки. [9, стр.8],[2,стр85-86]
3. Угол есть совокупность лучей, выходящих из общей точки и пересекающих данный отрезок. [3, стр. 86]
4. Углом называется «часть пучка лучей, ограниченная двумя лучами (того же пучка), подобно тому как отрезок есть часть прямой линии, ограниченная двумя точками. [2, стр86]
5. Углом называется совокупность точки и двух лучей, выходящих из этой точки... Под точками угла мы понимаем его вершину и все точки его сторон. [16, стр18]
В школьной практике обычно употребляются первое или второе определение (по существу они являются не определениями, а описаниями).
При этом надо заметить, что если используется первое определение угла, то вводится еще и понятие внутренней области угла.
В последующем школьном курсе элементарной математики понятие угла расширяется (в тригонометрии - угол как мера вращения, в стереометрии — угол между двумя скрещивающимися прямыми, угол между прямой и плоскостью, двугранный угол и т. п.), причем понятие «неопределенной части плоскости» в явном виде уже не фигурирует. Поэтому первому определению следует отдать предпочтение.
Возможны следующие действия с величинами углов: сравнение, сложение вычитание величин углов, умножение угла на челое цисло и деление угла на целые части.
С понятиями прямого и развернутуго угла учащиеся знакомы из пропедевтического курса геометрии. Зная, что все развернутые углы равны между собой, и все прямые углы равны между собой, можно сообщить учащимся о том, что развернутый и прямой углы имеют постоянные величины (как и метр и килограмм, которые тоже имеют постоянную величину). Отсюда, естественно принять за единицу измерения углов угол, в часности прямой угол, как имеющий постоянную величину.
Величина угла – это положительная величина, численное значение которой обладает следующими свойствами:
1) равные углы имеют равны градусные меры.;
2) если угол разбивается на части, градусные меры которых известны, то градусная мера всего угла равна сумме грусных мер этих углов.
3) меньший угол имеет меньшую градусную меру, и больший угол имеет большуюградусную меру.
При проведении уроков по теме «Величины углов» материал должен закрепляться на частных примерах. Желательно проводить самостоятельные работы, как обучающего, так и контролирующего характера по каждому из изучаемых случаев.
2.3 Методика изучения площадей фигур в курсе геометрии средней школы
В теме «Площади фигур» наблюдается синтез традиционно-синтетического и аналитического методов. Изучаемые здесь факты носят аналитический характер (например площадь треугольника), а доказательства основаны на применении традиционно-синтетического метода.
При изучении темы «Площади фигур» используется такая схема:
простая фигура – площадь фигуры как величина – площадь прямоугольника – площадь параллелограмма – площадь трапеции – площадь подобных фигур.
Перед введением понятия «простые фигуры» учащимся предлагается по готовым чертежам назвать: простую ломаную, замкнутую ломаную, простую замкнутую ломаную, выпуклый многоугольник, плоский треугольник, плоский пятиугольник. Напомним, что из определения треугольника как фигуры состоящей из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки следует, что он должен представляться как «скелет», «каркас»! Плоский треугольник – конечная часть плоскости, ограниченная треугольником. Выпуклый многоугольник – многоугольник, который лежит в одной плоскости относительно любой прямой, содержащей его сторону. Плоским многоугольником называется конечная часть плоскости, ограниченная многоугольником. Простая замкнутая ломаная называется многоугольником. После этого дается определение:
Геометрическую фигуру будем называть простой , если ее можно разбить на конечное число плоских треугольников. Примером простой фигуры может служить плоский выпуклый многоугольник, который разбивается на плоские треугольники диагоналями, выходящими из одной вершины.
«Площадь простой фигуры – это положительная величина, численное значение которой обладает следующими свойствами:
1) равные фигуры имеют равные площади;
2) если фигура разбивается на части, являющиеся простыми фигурами, то площадь этой фигуры равна сумме площадей ее частей;
3) площадь квадрата со стороной, равной единице измерения, равна единице;
В таком определении новой величины использован аксиоматический подход. С помощью свойств описана аддитивность площади простой фигуры, определена мера (единица измерения) площади. Первое свойство площади определяет термин «равновеликие». Если фигуры равны, то равны и их площади, однако обратное утверждение не всегда верно.
С формулами площадей некоторых фигур учащиеся познакомились в курсе арифметики. Измеряя площади при помощи памятки, школьники познакомились с оценкой ее по недостатку и по избытку. И таким образом они уже подготовлены к восприятию вывода формулы площади прямоугольника.