Курсовая работа: Методика изучения квантовой оптики в базовой и профильной школах

5. Объяснение всех закономерностей фотоэффекта с квантовых позиций.

6. Выводы квантовой тёории о природе света.

7. Вакуумные и полупроводниковые фотоэлементы. Применение фотоэффекта в технике.

Раскроем основные из этих этапов.

К пониманию явления фотоэффекта и его закономерностей лучше всего подвести школьников с помощью эксперимента. На первом уроке по теме обычно предлагают серию опытов.

1) Закрепленную на стержне электрометра хорошо очищенную цинковую пластину заряжают отрицательно и освещают потоком ультрафиолетовых лучей. Наблюдают разряд электрометра.

2) Разряд прекращается, если мы перекрываем поток лучей стеклом.

З) Если же сообщить пластине положительный заряд, то при таком же освещении разряд электрометра не наблюдается.

4) Разряд происходит тем быстрее, чем больше интенсивность света.

5) Заменив цинковую пластину медной (затем свинцовой), повторяют опыты при тех же условиях (тот же источник света и начальный заряд).

Если в школе нет хорошего источника ультрафиолетового излучения и постановка эксперимента на уроке затруднена, то целесообразно провести объяснение на основе использования видеофильма «Фотоэффект», в первых кадрах которого показаны описанные выше демонстрации.

Предложенная последовательность демонстраций (или просмотр кадров видеофильма) позволяет проводить первый урок по теме методом эвристической беседы.

В ходе беседы последовательно обсуждают следующие вопросы: почему заряженная пластина может сохранять заряд в течение длительного времени? Какими способами можно разрядить пластину? Как объяснить быстрый разряд отрицательно заряженной пластины при ее освещении светом дуги? Будет ли при действии ультрафиолетового излучения разряжаться положительно заряженная цинковая пластина? Почему электрометр не обнаруживает изменения заряда в этом случае? Наблюдаем ли мы разряд медной пластины при тех же условиях опыта? Почему прекращается разряд отрицательно заряженной цинковой пластины, если свет от электрической дуги перекрыть стеклянной пластиной?

Проведенное обсуждение позволяет сделать выводы:

1. Под действием света разряжаются только отрицательно заряженные металлы. Следовательно, при некоторых условиях свет способен вырывать электроны из металлов. Это явление называют фотоэффектом. (Здесь же можно рассказать и об истории открытия фотоэффекта.)

2. Разряд начинается одновременно с началом освещения, следовательно, фотоэффект практически безынерционен. (Точные опыты показали, что время между началом облучения и началом фотоэффекта не превышает 10-9 с.)

3. Наличие фотоэффекта зависит от рода и обработки освещаемого металла и от спектрального состава излучения, скорость разряда зависит также и от падающей в единицу времени световой энергии.

При формулировке выводов приходится избегать понятий «освещенность», «световой поток», так как их по программе общеобразовательной средней школы не изучают, а использовать главным образом понятие «энергия световой волны» и говорить об энергии, которая за 1 с переносится световой волной через поперечное сечение, перпендикулярное к направлению распространения света (т. е. об интенсивности света).

Изучение закономерностей фотоэффекта продолжают на установке, позволяющей исследовать зависимость силы фототока от приложенного напряжения, интенсивности и спектрального состава излучения. В названном выше видеофильме «Фотоэффект» эта зависимость исследована на установке, подобной установке А. Г. Столетова (цинковый диск освещен ультрафиолетовым светом дуговой лампы сквозь латунную сетку; в цепь включен гальванометр и подано напряжение от аккумуляторной батареи). На уроке эксперимент проводят с помощью вакуумного фотоэлемента, для чего собирают установку по схеме, приведенной на рис. Вначале экспериментально устанавливают существование силы тока насыщения, а затем — его зависимость от интенсивности падающего на катод света (первый закон фотоэффекта — закон Столетова). По результатам эксперимента строят графики зависимости силы фототока при двух разных интенсивностях света от напряжения U .

После этого, освещая фотоэлемент светом определенной частоты, с помощью потенциометра «запирают» фотоэлемент и измеряют запирающее напряжение, что позволяет определить максимальную скорость вылетающих электронов:

.

Меняя светофильтры, получают при повторении опытов новые данные и убеждают учащихся в том, что максимальная скорость вылета электронов зависит от частоты падающего света и не зависит от интенсивности света (второй закон фотоэффекта).

Далее приступают к объяснению законов фотоэффекта. Само явление и то, что сила фототока насыщения прямо пропорциональна падающей в единицу времени световой энергии - первый закон фотоэффекта, можно объяснить и с волновых позиций. Объяснение того, почему существует порог фотоэффекта (красная граница), почему максимальная начальная скорость (и максимальная кинетическая энергия фотоэлектронов) не зависит от интенсивности света, а определяется только его частотой (линейно возрастает с частотой), а также объяснение безынерционности фотоэффекта не может быть дано на основе волновой электромагнитной теории света. Ведь по этой теории вырывание электронов из металла является результатом их «раскачивания» в переменном электрическом поле световой волны. Но тогда и скорость и кинетическая энергия фотоэлектронов должны зависеть от амплитуды вектора напряженности электрического поля волны и, следовательно, от ее интенсивности, на «раскачку» электрона требуется время, эффект не может быть безынерционным. Несоответствие экспериментальных фактов сложившейся волновой теории света доказывало ее несостоятельность и требовало создания новой теории

Далее рассказывают о том, что трудности в объяснении законов фотоэффекта были не единственной причиной создания теории. В 1900 г. М. Планк для объяснения теплового излучения вынужден был высказать, на первый взгляд, нелепую идею, что тело излучает энергию не непрерывно, а отдельными порция (квантами). Эта идея противоречила сложившимся представлениям классической физики, где процессы и величины, их характеризующие, изменяются непрерывно. Эту непонятную и поэтому мало кем принятую идею в 1905 г. А. Эйнштейн использовал для объяснения законов фотоэффекта. Он пошел далее М. Планка и утверждал: свет не только испускается, но и распространяется и поглощается квантами.

Иначе говоря, поток монохроматического света, несущий энергию Е , представляет собой поток n частиц (названных позднее фотонами), каждая из которых обладает энергией hv :

.

Энергия фотона пропорциональна частоте света. Чем больше частота (меньше длина волны) излучения, тем большую энергию несет каждый его фотон.

Далее Эйнштейн предположил: каждый фотон взаимодействует не со всем веществом, на которое падает свет, и даже не с атомом в целом, а с отдельным электроном атома. Фотон отдает свою энергию электрону, а электрон, получив энергию, вырывается из металла с определенной кинетической энергией. На основе закона сохранения энергии можно записать следующее уравнение для элементарного акта взаимодействия фотона с электроном:

,

где hv — энергия фотона, A – работа выхода электрона из металла,

— максимальная кинетическая энергия, которую может приобрести электрон.

К-во Просмотров: 499
Бесплатно скачать Курсовая работа: Методика изучения квантовой оптики в базовой и профильной школах