Курсовая работа: Методы минимизации логических функций

0*1*

*01*

**11

**11

Как видно из таблиц, при получении матрицы второго ранга первый и седьмой наборы третьего ранга не склеились ни с какими другими наборами. Их необходимо занести в конечную матрицу простых импликант. В матрице же второго ранга мы видим, что некоторые наборы одинаковые. Их необходимо вычеркнуть, так как дизъюнкция одинаковых наборов равна этой же дизъюнкции (это следует из закона повторения)

Простые импликанты

1

2

3

4

5

0*1*

*01*

**11

00*0

01*1

Перенеся все выделенные строки в конечный массив, получим матрицу СДНФ. Алгебраическая запись СДНФ будет выглядеть следующим образом:


F(X1 X2 X3 X4 ) = X1 X3 V X2 X3 V X3 X4 V X1 X2 X4 V X1 X2 X4 .

Эта же функция в нашем случае является и минимальной ДНФ.

1.3.3 Метод Квайна-Маккласки

В основу данного метода также положен закон неполного склеивания. Только в отличие от метода Квайна здесь производится гораздо меньше сравнений, так как, разбив исходную матрицу на несколько групп, мы сравниваем только те наборы, которые отличаются индексом на 1 или местоположением меток.

Распределим импликанты ДСНФ по индексам.

ДСНФ Индекс i

1

2

3

4

5

6

7

8

К-во Просмотров: 670
Бесплатно скачать Курсовая работа: Методы минимизации логических функций