Курсовая работа: Методы внутренней сортировки Обменная сортировка Сравнение с другими методами сортировки

8 1 23 5 65 44 33 6

1 8 23 5 65 44 33 6

Шаг 2

1 8 23 5 65 44 33 6

1 8 5 23 65 44 33 6

1 8 5 23 65 44 33 6

1 8 5 23 44 65 33 6

1 8 5 23 44 33 65 6

1 8 5 23 44 33 6 65

Шаг 3

1 8 5 23 44 6 33 65

1 8 5 23 6 44 33 65

1 8 5 6 23 44 33 65

1 8 5 6 23 44 33 65

1 5 8 6 23 44 33 65

Шаг 4

1 5 6 8 23 44 33 65

1 5 6 8 23 44 33 65

1 5 6 8 23 44 33 65

1 5 6 8 23 33 44 65

Шаг 5

1 5 6 8 23 33 44 65

1 5 6 8 23 33 44 65

1 5 6 8 23 33 44 65

Шейкерная сортировка позволяет сократить число сравнений (по оценке Кнута средним числом сравнений является (n2 - n?(const + ln n)), хотя порядком оценки по-прежнему остается n2. Число же пересылок, вообще говоря, не меняется. Шейкерную сортировку рекомендуется использовать в тех случаях, когда известно, что массив "почти упорядочен".

4. Сортировка выбором

При сортировке массива a[1], a[2], ..., a[n] методом простого выбора среди всех элементов находится элемент с наименьшим значением a[i], и a[1] и a[i] обмениваются значениями. Затем этот процесс повторяется для получаемых подмассивов a[2], a[3], ..., a[n], ... a[j], a[j+1], ..., a[n] до тех пор, пока мы не дойдем до подмассива a[n], содержащего к этому моменту наибольшее значение. Работа алгоритма иллюстрируется примером в таблице 2.5.

Таблица 5. Пример сортировки простым выбором

Начальное состояние массива 8 23 5 65 44 33 1 6
Шаг 1 1 23 5 65 44 33 8 6
Шаг 2 1 5 23 65 44 33 8 6
Шаг 3 1 5 6 65 44 33 8 23
Шаг 4 1 5 6 8 44 33 65 23
Шаг 5 1 5 6 8 33 44 65 23
Шаг 6 1 5 6 8 23 44 65 33
Шаг 7 1 5 6 8 23 33 65 44
Шаг 8 1 5 6 8 23 33 44 65

Для метода сортировки простым выбором требуемое число сравнений - nx (n-1)/2. Порядок требуемого числа пересылок (включая те, которые требуются для выбора минимального элемента) в худшем случае составляет O(n2). Однако порядок среднего числа пересылок есть O(n?ln n), что в ряде случаев делает этот метод предпочтительным.

5. Сортировка разделением (Quicksort)

Метод сортировки разделением был предложен Чарльзом Хоаром (он любит называть себя Тони) в 1962 г. Этот метод является развитием метода простого обмена и настолько эффективен, что его стали называть "методом быстрой сортировки - Quicksort".

Основная идея алгоритма состоит в том, что случайным образом выбирается некоторый элемент массива x, после чего массив просматривается слева, пока не встретится элемент a[i] такой, что a[i] > x, а затем массив просматривается справа, пока не встретится элемент a[j] такой, что a[j] < x. Эти два элемента меняются местами, и процесс просмотра, сравнения и обмена продолжается, пока мы не дойдем до элемента x. В результате массив окажется разбитым на две части - левую, в которой значения ключей будут меньше x, и правую со значениями ключей, большими x. Далее процесс рекурсивно продолжается для левой и правой частей массива до тех пор, пока каждая часть не будет содержать в точности один элемент. Понятно, что как обычно, рекурсию можно заменить итерациями, если запоминать соответствующие индексы массива. Проследим этот процесс на примере нашего стандартного массива (таблица 2.6).

Таблица 6. Пример быстрой сортировки

Начальное состояние массива 8 23 5 65 |44| 33 1 6
Шаг 1 (в качестве x выбирается a[5])

|--------|

8 23 5 6 44 33 1 65

К-во Просмотров: 335
Бесплатно скачать Курсовая работа: Методы внутренней сортировки Обменная сортировка Сравнение с другими методами сортировки