Курсовая работа: Межпредметные связи в школьном обучении
Общая схема тематического планирования межпредметных связей может быть представлена в форме таблицы:
Тема «...................» Класс «................»
Темы и даты уроков | Основные предметные понятия и умения |
Связь с другими предметами |
Методы и приемы обучения |
Наглядные пособия |
Задания по предмету и межпредметные | ||
Смежные понятия |
Факты |
Умения |
Данная форма может быть изменена учителем в зависимости от конкретных условий установления межпредметных связей в обучении. Такое планирование создаёт у учителя общее представление о том, какие знания и из каких предметов необходимо учащимся повторить к каждому уроку, какие понятия и знания из других предметов следует привлечь к раскрытию основных понятий учебной темы и какие мировоззренческие идеи будут развиваться на основе межпредметных связей. Знания из разных предметов помогают поднять обобщение учебного материала темы на мировоззренческий уровень.
Такое планирование учитывает многообразие видов межпредметных связей и позволяет выделить основные направления активизации познавательной деятельности учащихся в процессе изучения учебной темы. В целях эффективной организации учебно-познавательной деятельности учеников по осуществлению межпредметных связей полезно спланировать их систему на каждом уроке учебной темы.
Поурочное планирование.
Конкретизация использования межпредметных связей в процессе обучения достигается с помощью поурочного планирования. Поурочный план-разработка показывает, когда, на каком этапе урока и как, какими способами включаются знания из других курсов в изучение нового или закрепление учебного материала. Особенно необходима тщательная разработка обобщающего урока с межпредметными связями. Выделение таких уроков производится на основе тематического планирования.
Положительные стороны данной разработки -- это формулировка цели и задач урока с учетом межпредметных связей; формулировка конкретных вопросов к учащимся, требующих воспроизведения и применения знаний по физике; определение понятий; наличие мировоззренческого вывода, обобщающего факты и законы математики и физики; включение в домашнее задание вопросов межпредметного содержания.
Составляя поурочные планы, учителю важно знать, что учащиеся уже освоили из необходимых опорных знаний на уроках по другим предметам, согласовать с учителями смежных предметов постановку вопросов и заданий, чтобы избежать дублирования и достигнуть развития общих идей и понятий, их углубление и обогащения. Этому помогает посещение уроков и изучение составляемых коллегами планов реализации межпредметных связей.
Планы могут быть обсуждены на методических комиссиях по циклам предметов, согласованы с завучем школы. Обсуждение планов позволяет предупредить ошибки в использовании знаний из других предметов, устранить неточности в формулировке вопросов, в трактовке понятий смежных курсов, определить единые подходы в объяснении сущности изучаемых процессов и явлений, избрать наиболее рациональные методы обучения.
Таким образом, планирование составляет необходимое и существенное звено подготовки учителя к эффективному осуществлению межпредметных связей и является одним из средств их реализации в практике обучения школьников.
§ 4. Способы реализации и планирование межпредметных связей в обучении математики и биологии
Использование межпредметных связей - одна из наиболее сложных методических задач учителя математики. Она требует знаний содержания программ и учебников по другим предметам. Реализация межпредметных связей в практике обучения предполагает сотрудничество учителя с учителями химии, физики, посещения открытых уроков, совместного планирования уроков и т.д.
Учитель математики с учетом общешкольного плана учебно-методической работы разрабатывает индивидуальный план реализации межпредметных связей в математических курсах. Методика творческой работы учителя включает ряд этапов:
1) изучение раздела "Межпредметные связи" по каждому математическому курсу и опорных тем из программ и учебников других предметов, чтение дополнительной научной, научно-популярной и методической литературы;
2) поурочное планирование межпредметных связей с использованием курсовых и тематических планов;
3) разработка средств и методических приемов реализации межпредметных связей на конкретных уроках;
4) разработка методики подготовки и проведения комплексных форм организации обучения;
5) разработка приемов контроля и оценки результатов осуществления межпредметных связей в обучении.
Рассмотрим межпредметные связи математики и биологии.
Хотя вбиологии широко используются результаты и методы, заимствованные из чистой математики, сама она по существу представляет собой прикладную научную дисциплину.
В биологии специалистыне могут выполнять важные исследования,не прибегая к непосредственному сотрудничеству с учеными математиками, которые в процессе своей подготовки не получают глубоких биологических знаний. Поэтому сотрудничество между этими специалистами является важной особенностью почти всех научных исследований в области биологии.
Существуют ситуации, когда требуется весьма незначительное сотрудничество. Так, биолог, имеющий некоторую математическую подготовку, сможет довольно точно вывести дифференциальное уравнение в частных производных, описывающее сложный физиологический процесс, однако он не сможет найти его решение. Эту задачу можно передать непосредственно математику с простой просьбой “получить ответ”. Такой порядок может оказаться удовлетворительным, если не возникнут какие-либо затруднения. В этом случае работа математика носит преимущественно вспомогательный характер, и настоящего сотрудничества здесь не требуется.
Однако вполне возможно, что для решения уравнений нужны некоторые дополнительные условия или допущения, либо их трудно решить именно в той форме, в какой они представлены. В этом случае математик может ввести дополнительные ограничения или произвести некоторые изменения, позволяющие решить эти уравнения. Но может оказаться, что произведенные им изменения не соответствуют духу первоначальной биологической задачи, и в результате будет затрачено много сил на сложные, но бесполезные математические расчеты в поисках точного решения ошибочной задачи.