Курсовая работа: Многомерная Вселенная

К безусловным достижениям теории многомерных пространств следует отнести установление инвариантности (идентичности) законов механики, квантовой механики, электродинамики и термодинамики. Все физические законы являются частными случаями самых общих законов пространственно- временных преобразований. Инвариантность физических законов позволяет из множества возможных описаний физических процессов выбрать описание, дающее наибольшую наглядность или выбрать несколько описаний, обеспечивающих всестороннее изучение явления или процесса. Например, инвариантность законов электродинамики и аэро-гидродинамики позволяет составить представление о внутреннем устройстве элементарных частиц.

Заветной мечтой Эйнштейна было найти физические законы, одинаково справедливые в любых системах отсчета. Поискам таких законов он посвятил последние тридцать лет своей жизни, но успеха так и не добился. В противоположность идеям Эйнштейна, теория многомерных пространств отыскивает и главное, находит системы отсчета, в которых имеет место инвариантность известных физических законов.

3. Многомерные пространства Вселенной

Задача определения свойств пространства и времени при произвольном распределении масс чрезвычайно трудна. Известны частные случаи решения задачи для трех тел. Для четырех тел нет даже частных решений. По этой причине в космологии применяется модель однородной (средняя плотность вещества в достаточно больших объемах пространства одинакова) и изотропной (в пространстве нет выделенных направлений) Вселенной. Такая модель изначально не свободна от парадоксов Ольберса, рассчитавшего, что в однородной и изотропной Вселенной света должно быть бесконечно много, а гравитация должна быть бесконечно велика. По сравнению с бесконечно большой гравитацией, конечная сила притяжения Земли становится бесконечно малой, поэтому люди и все незакрепленные на Земле предметы должны находиться в невесомости.

Любой «правильный» парадокс свидетельствует о несоответствии модели изучаемому объекту или явлению. Если гравитация не бесконечно велика, значит, пространство Вселенной замкнуто. В замкнутом пространстве не все направления равнозначны. Направление, выводящее наблюдателя за пределы искривленного пространства, резко отличается от всех других доступных для него направлений. Значит, модель Вселенной не должна быть ни однородной, ни изотропной. «Разбегание» галактик требует, чтобы модель Вселенной была еще и динамичной.

Большинство ученых признает стандартную модель Вселенной, построенную на идее «Большого взрыва» и дополненную в конце XX века теорией инфляционного расширения. В стандартной модели Вселенной противоречий еще больше, чем в специальной теории относительности. Если парадоксы специальной теории относительности связаны с ее неправомерным применением, то парадоксы теории Большого взрыва связаны с применением заведомо неправильной модели Вселенной. В теории Большого взрыва разрывается цепь причинно-следственных связей, пространство рождается из ничего, Вселенная расширяется в ничем, и имеет, непонятно почему, три пространственных и одно временное измерение. Задавать вопрос о том, что было до момента рождения Вселенной – запрещено.

Возможно, причинно-следственные связи и разрываются, но этот вопрос не может быть разрешен в рамках физической теории. Физики, признающие теорию Большого взрыва, вольно, или невольно признают акт Божественного Творения. В теории Большого взрыва нарушается закон сохранения материи, поэтому она несовместима с теорией многомерных пространств, ведь произведение количества пространства на количество времени, согласно закону сохранения материи, есть величина постоянная и в нуль обратиться не может. Сжимая пространство, мы выжимаем из него время и наоборот.

Расстояние между центрами образующих окружностей пикового тора на рис.1 ничтожно мало по сравнению с размерами наблюдаемой Вселенной, поэтому мы можем считать моделью Вселенной сферу. Масса Вселенной, вместе со всеми ее наблюдателями, как величина пространства второго измерения, равномерно распределена по поверхности сферы.

В стандартной модели Вселенной наблюдателя помещают в центр сферы, а массу распределяют равномерно по ее объему. В стандартной модели Вселенная рассматривается изнутри, поэтому очень сложно определить законы движения пространства, находясь внутри этого же пространства. Согласно все той же теореме Гёделя можно создать сколько угодно внутренне непротиворечивых моделей стандартной Вселенной.

В теории многомерных пространств наша трехмерная Вселенная рассматривается из четырехмерного пространства, поэтому возможно построение единственной, но правильной модели. К тому же законы движения в стандартной модели принимают уродливый вид, примерно такой же, какой примут законы движения планет Кеплера, если записать их в геоцентрической системе Птолемея. В такой записи полностью выхолащивается физическая сущность изучаемых движений, торжествует полнейшая абстракция. Примером тому служит великое множество теорий тяготения, разработанных по образцу и подобию общей теории относительности Эйнштейна. Эти теории невозможно ни опровергнуть, ни доказать методами тензорного исчисления, которые используются при построении теорий.

Из-за различий моделей наблюдатели измеряют разные расстояния. Наблюдатель стандартной модели измеряет расстояния по прямой, и полагает, что скорость расширения Вселенной равна скорости света, а максимальное измеренное им расстояние равно радиусу Вселенной (рис.2). Ситуация здесь стандартная. Внутренняя неверная интуиция всегда заставляла человека помещать себя в центр мироздания. Так возникла система вращающихся прозрачных сфер Птолемея. Коперник лишил нас привилегированного положения, сделав Землю рядовой планетой, уступившей свое место Солнцу. Вильям Гершель полагал, что Солнце в нашей галактике имеет центральное положение. Американский астрофизик Харлоу Шепли установил, что Солнце расположено вовсе не в центре Млечного Пути, а на его окраине. Так второй раз после Коперника было опровергнуто представление о нашем привилегированном положении во Вселенной.

Модель Вселенной теории многомерных пространств лишает нас привилегированного положения в четырехмерном пространстве. Наблюдателям в теории многомерных пространств запрещено находиться в центре сферы, они могут располагаться только на поверхности сферы. Наблюдатель, находящийся на пленке модели Вселенной, измеряет расстояния между космическими объектами по поверхности сферы, поэтому максимальное измеренное им расстояние равно , а скорость расширения равна скорости движения горизонта событий.

Мы получили динамичную, лишенную парадоксов Ольберса модель Вселенной. При построении модели мы выполнили одно пространственно-временное преобразование, переместились в пространство четвертого измерения, и трехмерное пространства стало для нас двумерной сферической пленкой. Таким образом, мы можем рассматривать модель Вселенной из привычного трехмерного пространства, применять к ней специальную теорию относительности и общие законы физики.

Любая точка 0 сферы может быть принята за центр инерциальной системы отсчета для наблюдателя стандартной модели. В теории многомерных пространств наблюдатель может принять за начало относительной для него системы отсчета любую точку окружающего модель Вселенной пространства. Имеющиеся технические средства позволяют уже сейчас замерить скорость любого объекта по отношению к реликтовому излучению, физическую сущность которого мы рассмотрим ниже, и таким образом ввести абсолютную систему координат, покоящуюся по отношению к двумерной пленке Вселенной. Наше Солнце, например, движется в этой абсолютной системе по сфере со скоростью примерно 400 км/c. Улетаем мы из созвездия Водолея, а летим в направлении границы созвездий Льва и Чаши. Наша галактика в составе локальной группы галактик движется в абсолютной системе отсчета со скоростью 600 км/c.

Теория многомерных пространств идет по пути синтеза ньютоновой и эйнштейновской моделей пространства-времени. Долгое время электродинамика движущихся сред ошибочно считалась полной, завершающей физической теорией, ее стали применять для описания всех подряд физических явлений и процессов. Относительное полностью вытеснило из физики понятие абсолютного. Любая физическая теория, в которой встречается слово «абсолютное», заведомо признавалась релятивистами ненаучной.

Сам по себе метод рассмотрения предметов и явлений в статике, а тем самым огрубление, упрощение действительности, имеет полное право на существование. Метод абстрагирования, который при этом применяется, вполне научен и явно или неявно используется всеми научными дисциплинами. Если за покоем не забывать движение, за статикой - динамику, а за деревьями – лес, то абсолютное не только допустимо, оно необходимо в физической теории.

Плохую услугу познанию оказывает не только абсолютизация покоя, но и абсолютизация его противоположности – движения. И то и другое есть выражение метафизического способа исследования. Если в первом случае мы встаем на путь, ведущий к догматизму, то во втором – на путь, ведущий к абсолютному релятивизму.

Австрийский физик Эрнст Мах, под влиянием идей которого находился и Эйнштейн, писал об учениях Птолемея и Коперника следующее: «…оба учения одинаково верны, только последнее проще и практичнее ». Эйнштейн пошел дальше своего кумира, отказав абсолютным системам вообще в праве на существование. А ведь именно такую, абсолютную, выделенную систему для планет нашел Коперник. Среди множества возможных систем отсчета всегда существует хотя бы одна выделенная, найти такую систему иногда бывает чрезвычайно трудно, так как требуется преодолеть некоторый барьер, взглянуть на изучаемую проблему не изнутри, а снаружи.

Не сумев найти абсолютную систему отсчета для объектов трехмерного пространства, Эйнштейн, а за ним и все релятивисты, заявили, что абсолютных систем отсчета не существует. Но это не так. В этом разделе мы рассматриваем именно такую систему отсчета, неподвижную для всех объектов нашей Вселенной. Особенностью такой системы является то, что расположена она в четырехмерном пространстве. Самым сложным в построении абсолютной системы отсчета оказалось допустить возможность существования четырехмерного пространства, преодолеть известный психологический барьер. Дело доходило до того, что некоторые ученые предлагали не платить зарплату физикам, разрабатывающим теорию суперструн на том основании, что теория эта имеет дело с многомерными пространствами.

Движение модели Вселенной для наблюдателя абсолютной системы отсчета представляет собой обычное механическое движение расширяющейся сферы. Вместо совершенно абстрактной общей теории относительности, мы можем изучать нашу Вселенную с помощью фундаментальных законов классической и квантовой механики. Фактически все пространства Вселенной и фундаментальные константы совершают гармонические колебания (рис.3). Примем это утверждение за постулат, хотя для микромира его можно считать доказанным.

Границы горизонта событий Вселенной (двумерная пленка модели) определяют область пространства, в которой вещество взаимодействует гравитационно. Горизонт событий Вселенной (максимальное расстояние между двумя точками на сфере) в настоящее время находится на расстоянии 1,68м, а доступное наблюдениям расстояние равно м.

Расстояние до горизонта событий всегда больше доступного наблюдениям расстояния, а скорость движения горизонта событий больше скорости света. Здесь нет никакого противоречия, ведь горизонт событий – это не материальный объект и может двигаться с любой скоростью. По этой причине мы никогда не увидим момента рождения Вселенной. По этой же причине фотографии края Вселенной практически не отличаются от фотографий ближней Вселенной.

Ускоренное расширение Вселенной создает силы гравитации. Силы гравитации действуют со стороны четвертого измерения и поэтому воспринимаются нами как воздействие, осуществляемое одновременно со всех направлений. Естественное объяснение получает и реликтовое излучение, которое тоже действует сразу со всех направлений, кроме того, находят объяснение огромные энергии космических частиц. Частицы ниоткуда не прилетают, они возникают из вакуума, как результат взаимодействия движущейся пленки модели вселенной с четырехмерным пространством. Реликтовое излучение никоим образом не может служить подтверждением теории Большого взрыва. Реликтовое излучение подтверждает лишь, что наше трехмерное пространство движется в пространстве четырехмерном, причем движется со скоростью, равной скорости света. Само название излучения, подчеркивающее его древнее происхождение, не имеет физического обоснования. Космические частицы очень быстро теряют свою огромную энергию, они никак не могли сохраниться за несколько миллиардов лет с момента их образования в модели Большого взрыва.

Точка М на рис.3 – современное состояние Вселенной. Возраст трехмерной Вселенной 8 млрд. лет, расширение Вселенной сменится ее сжатием через 1,5 млрд. лет. Тогда же изменится знак кривизны пространства, двумерная пленка модели Вселенной как бы вывернется наизнанку.

В теории многомерных пространств возраст Вселенной определяется на основе единственной фундаментальной квантовой постоянной, а не на основе несуществующей постоянной Хаббла. В теории Большого взрыва все расчеты выполняются с применением линейной экстраполяции к точке взрыва, но такая экстраполяция возможна на небольших, по сравнению с периодом колебаний Вселенной отрезках времени и предполагает постоянство во времени огромного количества констант. Природе нет дела до наших констант, в природе соблюдается лишь закон сохранения материи. Скорость света, постоянная Планка и гравитационная постоянная не являются величинами постоянными. Во Вселенной одна постоянная – фундаментальная квантовая длина. Величина, обратная фундаментальной квантовой длине есть период колебаний одномерного пространства. Период колебаний нашего трехмерного пространства с учетом многомерности времени равен 18,9 млрд.лет. Скорость света изменяется всего лишь на 0,05 м/c за один год. Современные технические средства позволяют измерить скорость света с точностью 1,2 м/c. Если точность измерений не улучшится, то уловить очень малое изменение скорости можно будет на временном интервале не менее 25 лет.

Плотность Вселенной равна ее критической плотности. В процессе расширения Вселенной площадь сферы увеличивается, а значит, увеличивается ее масса, но плотность всегда равна критической. По этой причине пространство Вселенной для нас и наших приборов всегда будет плоским. В теории Большого взрыва масса Вселенной не изменяется, а это приводит к сингулярностям, особым сверхъвстественным состояниям материи, сосредоточенной в одной точке. Появление сингулярностей предупреждает нас о том, что либо мы применяем неправильную модель, либо вышли за границы применимости теории. В случае общей теории относительности имеет место и то, и другое.

Согласно экспериментальным данным, полученным орбитальным радиотелескопом Давида Вилкинсона (WMAP) и опубликованным в январе 2003 года, отношение полной плотности Вселенной к критической равно Этот результат полностью соответствует модели Вселенной теории многомерных пространств. Теория Большого взрыва ничем, кроме чистой случайности не может объяснить тот факт, что именно в момент запуска радиотелескопа плотность Вселенной оказалась равна ее критической плотности.

Наблюдаемая (светящаяся) масса Вселенной составляет всего лишь 1% от общей массы Вселенной. Масса Вселенной в настоящее время равна кг, а масса, доступная наблюдению кг, что составляет 18% от массы Вселенной.

Если массу Вселенной принять за 100%, то «темная энергия» составляет 81% массы Вселенной, «темная масса» составляет 17% и лишь 1% составляет светящаяся масса.

«Темная энергия» - это потенциальная энергия разности масс Вселенной и наблюдаемой массы. Она гравитационно взаимодействует со светящейся массой, но видеть мы ее не можем. Такое возможно лишь в случае, когда скорость гравитации значительно больше скорости света. Ньютон в законе всемирного тяготения принял скорость гравитации равной бесконечности, Эйнштейн полагал, что скорость гравитации равна скорости света, а в теории многомерных пространств максимальная возможная скорость передачи взаимодействия равна м/c.

К-во Просмотров: 167
Бесплатно скачать Курсовая работа: Многомерная Вселенная