Курсовая работа: Моделирование адсорбции ионов тяжелых металлов на почве при различных значениях pH
Эта проблема может быть решена использованием более дешевых адсорбционно-активных материалов, полученных на основе природных минеральных сорбентов.
Природные минералы, обладающие высокой адсорбционной активностью и используемые для получения промышленных сорбентов, условно можно разделить на два класса: горючие ископаемые (каменный и бурый уголь, сланцы, торф) и природные алюмосиликаты (цеолиты, бентониты, каолины).
К алюмосиликатам, имеющим существенную адсорбционную способность, относят глинистые минералы и цеолиты.
Цеолиты как осадочного, так и вулканического происхождения, благодаря особенностям кристаллического строения, имеют более предпочтительные для условий материального производства адсорбционные свойства, чем глины. Основные направления использования природных цеолитов – адсорбенты воды и органических соединений, катализаторы, ионообменные материалы для поглощения ионов тяжелых металлов.
Природные глинистые минералы уступают по адсорбционным характеристикам цеолитам. Однако наличие крупнейших залежей осадочных пород в центральной части и на юге России, дешевизна разработки обуславливают возможность применения их в качестве адсорбционно-активных материалов и получения на их основе промышленных адсорбентов.
1.1 Основные теории адсорбции
Адсорбция – это концентрирование компонента в поверхностном слое, по сравнению с объемной фазой.
Явление адсорбции обусловлено избытком поверхностной энергии, возникающим вследствие нескомпенсированного действия межмолекулярных сил в поверхностном слое на границе фаз. Величину избытка энергии, называемой поверхностной энергией Гиббса, определяют как произведение поверхностного натяжения s (фактор интенсивности) и площади поверхности раздела фаз s(фактор емкости).
В многокомпонентных системах в адсорбированное состояние предпочтительнее перейдет тот компонент смеси, который сильнее уменьшит межфазное натяжение.
В процессе адсорбции при перераспределении компонентов между поверхностным слоем и объемной фазой происходит изменение их химических потенциалов, поэтому процесс можно также рассматривать как переход поверхностной энергии в химическую. Соотношение между поверхностным натяжением и химическим потенциалом компонентов системы показано фундаментальным адсорбционным уравнением Гиббса:
-ds = SGi dmi ,
где Gi =hi /s– поверхностный избыток адсорбата компонента; в поверхностном слое по сравнению с его равновесной концентрацией в объемной фазе так называемая гиббсовская адсорбция:
G=V (c0 i -ci )/s,
где V – объем фазы, м3 ;
ci – равновесная объемная концентрация i-го компонента;
c0 i - исходная объемная концентрация, моль/ м3 ;
mi – химический потенциал i-го компонента, моль/ м2 .
Согласно правилу фаз Гиббса число степеней свободы для трехкомпонентной системы (адсорбент, адсорбтив, объемная фаза) равно трем, поэтому для количественной оценки равновесного состояния системы необходимо учитывать следующие параметры:
t – температура процесса; p(c) – парциальное давление пара или газа в объемной фазе или его концентрация; a – адсорбционная емкость адсорбента, количество адсорбата, поглощенного адсорбентом при конкретных условиях.
Для удобства изображения количественных соотношений в состоянии равновесия, один из трех параметров считают постоянным. Поэтому уравнения адсорбционного равновесия записываются тремя закономерностями:
изотермы адсорбции t= const:
1) изотермы адсорбции t= const:
a= ft (c)= ft ` (p);
2) изобары (изопикны) адсорбции p= const, c= const
a= fc (T)= fp ` (T);
3) изостеры адсорбции a= const
c= fa (T)= fa ` (T)
Построение единой теории адсорбции – задача чрезвычайно сложная, нерешенная до настоящего времени. Разработано большое количество теорий, позволяющих рассчитать с определенной долей вероятности величину адсорбции при заданных температуре и парциальном давлении адсорбата [7,11].
1.2 Пористая структура и удельная поверхность адсорбента.