Курсовая работа: Моделирование адсорбции ионов тяжелых металлов на почве при различных значениях pH
Фактором емкости избыточной поверхностной энергии Гиббса является поверхность раздела фаз. Следовательно, для обеспечения эффективности процесса адсорбции эта поверхность должна доставляться пористостью твердых тел.
Поры твердого тела имеют решающие значения во многих технологических процессах: при фильтрационном разделении различных веществ, при регулировании физических свойств различных полимеров, для обеспечения прочностных свойств стройматериалов, при добыче каменных углей.
В соответствии с областью исследований разработано несколько систем классификации пор.
Фундаментальные теоретические исследования по влиянию пористой структуры адсорбентов на их адсорбционную способность проведены академиком Дубининым М.М. и его учениками. Ими установлена явная зависимость адсорбционных свойств различных адсорбентов от характера пористости, которая позволила разработать научно обоснованную классификацию пор и адсорбентов по их структурным типам, принятую Международным союзом чистой и прикладной химии (ИЮПАК).
Классификация отражает характер адсорбционных процессов, протекающих в порах. Основные параметры этой классификации представлены в таблице 1.
Таблица 1.
Классификация пор (по Дубинину М.М.)
Название пор | размеры пор | роль в процессе адсорбции | ||
радиус, Ао | удельная поверхность, Sуд. , м2 /г | суммарный объем пор V∑ , см3 /г | ||
макропоры | >1000-2000 | 0,5-2,0 | 0,2-0,8 | играют незначительную роль в статике адсорбции, оказывают существенное влияние на кинетику, играют роль транспортных каналов |
переходные поры | 15 (1000-2000) | 10-400 | - | в переходных порах происходит послойная адсорбция, завершается капиллярной концентрацией |
микропоры | <15 | 500-1000 | <0,5* | в микропорах адсорбция носит характер объемного заполнения |
*для промышленных микропористых сорбентов
В соответствии с этой классификацией и в зависимости от преимущественного процесса адсорбции Дубинин М.М. определил три типа пористых тел: микропористые, макропористые и переходнопористые.
На эффективность адсорбции влияет не только геометрическая характеристика, но и их структура, т.е. комбинация микро-, макро- и переходных пор.
Твердое тело, обладающее тонкими порами, не может быть эффективным сорбентом, если не имеет развитой структуры транспортных переходных и макропор.
Кроме структуры и размеров большое значение имеет форма пор.
Центры физической адсорбции распространяются во впадинах, трещинах, зазорах, где действие межмолекулярных сил возрастает с увеличением молекулярного окружения. Выступы, ребра, углы несут атомы с меньшим числом соседей. Они обладают большим числом ненасыщенных химических связей и выполняют роль центров хемосорбции.
В качестве поверхностного центра рассматривается микроскопическая группа атомов (или один атом), которая в каком-либо смысле химически активна.
Решетки выделяют кислотные центры Льюиса L+ , способные присоединять e- и кислотные центры Бренстеда, обладающие тенденцией отдавать протон (рис.1). При этом один вид центров может переходить в другой, а прочность связей, хемосорбированных на поверхности молекул воды, определяет кислотные или основные свойства сорбента.
- H+
H – O
a) – Si – O – Al – O – Si – б) – Si – O – Al – O – Si –
OO
– Si – – Si –
Рис. 1 Кислотные активные центры на поверхности алюмосиликатов:
а) – кислота Льюиса (атом алюминия, имеющий три связи с кислородом кремнекислородного состава, требует дополнительную электронную пару для заполнения p-орбитали);
б) – кислота Бренстеда (образована из льюисовского центра, который координационно связал молекулу воды, ставшую источником протонов).
Активными центрами ионного обмена являются подвижные катионы.
Химический состав поверхностного слоя является природой твердого материала.
Так как объектом исследований являются алюмосиликаты, то достаточно рассмотреть строение поверхности кремнезема.
Поверхность кремнезема устилают силанольные –Si–OH и силоксановые –Si–O–Si– группы, соотношение которых может изменяться в зависимости от степени дегидроксилирования.
Образование поверхностного гидроксильного слоя на сколах кристаллической решетки обусловлено насыщением разорванных связей кристаллов в результате диссоциации воды: к каждому атому кислорода присоединяется водород, а к атомам металла – гидроксильные группы. Кислород OH-группы стремится образовать связь с несколькими атомами металла, если их взаимное расположение не препятствует этому. При таком построении атомы кислорода поверхностных OH-групп всегда располагаются в тех местах, где должны находиться атомы кислорода в бесконечной кристаллической решетке.
Известно, что при повышении температуры прогрева кремнезема силанольные группы способны конденсироваться, образуя силоксановые группы, при этом сначала удаляется физически адсорбированная вода (t<120o C), а затем происходит конденсация силанольных групп (180-400o C). Однако эти процессы могут происходить одновременно.