Курсовая работа: Моделирование движения парашютиста

Для имитационного моделирования движения парашютиста в системе MATLAB используем элементы пакета расширения Simulink. Для задания величин начальной высоты - H_n, конечной высоты - H_ k, числа - pi, μ – динамическая вязкость среды - my, обхват - R, массе манекена m, коэффициент лобового сопротивления - c, плотность воздуха - ro, площадь сечения тела - S, ускорение свободного падения - g, начальная скорость - V_n используем элемент Constantнаходящийся в Simulink/Sources(рисунок 3).

Рисунок 3. Элемент Constant


Для операции умножения используем блок Product, находящийся в Simulink/MathOperations/Product (рисунок 4).

Рисунок. 4

Для ввода k1 – линейного коэффициента пропорциональности и k2 – квадратичного коэффициента пропорциональности используем элемент Gain, находящийся в Simulink/MathOperations/Gain(Рисунок. 5.)

Рисунок. 5

Для интегрирования – элемент Integrator. Находящийсяв Simulink/Continuous/Integrator. Рисунок. 6.

Рисунок. 6

Для вывода информации используем элементы Display и Scope. Находящиеся в Simulink/Sinks. (Рисунок. 7)


Рисунок. 7

Математическая модель для исследования с использованием вышеперечисленных элементов, описывающая последовательный колебательный контур приведена на рисунке 8.

Рисунок. 8

Программа исследований

1. Исследование графика зависимости высоты от времени и скорости от времени масса парашютиста равна 50кг.

Рисунок 9

Из графиков видно, что при расчете падения парашютиста массой 50 кг, следующие данные: максимальная скорость равна 41,6 м/с и время равно 18с , и должна достигаться через 800 м падения, т.е. в нашем случае на высоте около 4200 м.

Рисунок. 10

2. Исследование графика зависимости высоты от времени и скорости от времени масса парашютиста равна 100кг.

Рисунок 11

Рисунок 12

С массой парашютиста 100 кг.: максимальная скорость равна 58 м/с и время равно 15с , и должна достигаться через 500 м падения, т.е. в нашем случае на высоте около 4500 м. (рисунок. 11., рисунок. 12).

Выводы по полученным данным, которые справедливы для манекенов, отличающихся только массой, но с одинаковыми размерами, формой, типом поверхности и другими параметрами, определяющими внешний вид объекта.

Легкий манекен при свободном падении в гравитационном поле с учетом сопротивления среды достигает меньшей предельной скорости, но за меньший промежуток времени и, естественно, при одинаковой начальной высоте – в более низкой точке траектории, чем тяжелый манекен.

Чем тяжелее манекен, тем быстрее он достигнет земли.

4. Решение задачи программным путем

М-файл функции parashut.m:

%Функция моделирования движения парашютиста

function dhdt=parashut(t,h)

global k1 k2 g m

% система ДУ первого порядка

dhdt(1,1)= -h(2);

dhdt(2,1)=(m*g-k1*h(2)-k2*h(2)*h(2))/m

М-файл вывода результатов parashutist.m:

% Моделирование движения парашютиста

% Васильцов С. В.

clc

global h0 g m k1 k2 a

% k1-линейный коэффициент пропорциональности, определяющийся свойствами среды и формой тела. Формула Стокса.

k1=6*0.0182*0.4;

%k2-квадратичный коэффициент пропорциональности, пропорционален площади сечения тела, поперечного по

К-во Просмотров: 422
Бесплатно скачать Курсовая работа: Моделирование движения парашютиста